



# MODIS Reflective Solar Calibration and Uncertainty Assessment

Xiaoxiong (Jack) Xiong NASA / GSFC

<u>Acknowledgements</u>: MODIS Characterization Support Team, NASA GSFC

Joint Meeting of GSICS Research and Data Working Group, Daejeon, Korea, March 22-25, 2011

## Outline

- Background
- MODIS Reflective Solar Calibration
  - > Methodology
  - > Traceability and Uncertainty
- On-orbit Performance
  - > Terra versus Aqua
- Summary

How MODIS is calibrated? What are the calibration uncertainties? Is Terra or Aqua better?

## Background

- Instrument: On-board both Terra and Aqua Spacecraft
- Applications: ~ 40 data products (land, oceans, and atmosphere)
- Spectral Bands: 36 from 0.41 to 14.4  $\mu\text{m}$  (20 RSB and 16 TEB)

International Earth Observing Constellations

• Spatial Resolutions: 0.25, 0.5, and 1 km (nadir)

Launch: 12/18/99

Follow-on Instrument: VIIRS on NPP, JPSS, and DWSS



Launch: 05/04/02

## Background

On-board Calibrators: SD, SDSM, BB, SRCA, and SV

•



MODIS is widely used for sensor inter-comparison/calibration

## **MODIS Reflective Solar Calibration**

### Methodology

- Linear calibration algorithm with MODIS serving as a ratioing radiometer
- Traceability and Uncertainty
  - MODIS solar calibration is reflectance based via its on-board SD
  - MODIS solar calibration requirements are ±2% for reflectance factors and ±5% for radiances at typical scene radiances and within a ±45° scan angle range
- Others
  - SRCA is used to characterize spectral and spatial performance
  - Lunar observations and the Earth view targets are used to monitor calibration stability at different AOI

## **Calibration Methodology**





dc: Digital count of SDSM

### **Calibration Methodology**

Reflectance to Radiance

$$L_{EV} = \frac{E_{Sun} \cdot \rho_{EV} \cdot \cos(\theta_{EV})}{\pi \cdot d_{Earth\_Sun(EV)}^2}$$

Solar Irradiance E<sub>SUN</sub>: 0.4-0.8 μm Thuillier et al., 1998; 0.8-1.1 μm Neckel and Labs, 1984; Above 1.1 μm Smith and Gottlieb, 1974

Others:

Thermal leak applied for SWIR bands (B5-7, B26) Leak coefficients determined from EV night time data B26 de-striping algorithm added (from C. Moeller of Wisconsin)

- MODIS calibration traceability and uncertainty
  - Reflectance based calibration with reference to SD BRF and well characterized uncertainties (Pre-launch and on-orbit)
- · SD BRF
  - Characterized pre-launch with traceability to NIST reflectance scale
  - Tracked on-orbit by the on-board SDSM
- Instrument temperature effect
  - Characterized at 3 instrument temperatures
- Response versus scan angle (RVS)
  - Characterized pre-launch
  - Relative changes monitored orbit
- SD screen vignetting function characterization
  - Derived from observations during spacecraft yaw maneuvers

Unbroken chain of comparisons (pre-launch and on-orbit) with stated uncertainties; traceable calibration refers to comparisons with traceable standards/references

$$\rho_{EV} \cdot cos\left(\theta_{EV}\right) = m_{l} \cdot dn_{EV}^{*} \cdot d_{ES\_EV}^{2} \qquad dn_{EV}^{*} = dn_{EV} \cdot (1 + k_{INST} \cdot (T_{INST\_EV} - T_{INST\_REF})) / RVS_{EV}$$

$$m_{l} = \frac{BRF_{SD} \cdot cos\left(\theta_{SD}\right)}{\langle dn_{SD}^{*} \rangle \cdot d_{ES\_SD}^{2}} \cdot \Gamma_{SDS} \cdot \Delta_{SD} \qquad dn_{SD}^{*} = dn_{SD} \cdot (1 + k_{INST} \cdot (T_{INST\_SD} - T_{INST\_REF})) / RVS_{SD}$$

$$k_{INST}^{*} : Inst temperature correction coefficient$$

$$T_{INST}^{*} : Inst temperature reference$$

$$\rho_{EV} cos\left(\theta_{EV}\right) = \rho_{SD} cos\left(\theta_{SD}\right) \cdot \Gamma_{SD} \cdot \Delta_{SD} \cdot \frac{dn_{EV} \cdot (1 + k_{INST} \cdot (T_{INST\_EV} - T_{INST\_REF})) \cdot d_{ES\_EV}^{2} \cdot RVS_{SD}}{\left[\frac{\delta(\rho_{EV} cos(\theta_{EV}))}{\rho_{EV} cos(\theta_{EV})}\right]^{2} = \left[\frac{\delta\rho_{SD}}{\rho_{SD}}\right]^{2} + \left[\frac{\delta\Gamma_{SD}}{\Gamma_{SD}}\right]^{2} + \left[\frac{\delta\Delta_{SD}}{\Delta_{SD}}\right]^{2} + \left[\frac{\delta dn_{SD}}{dn_{SD}}\right]^{2} + \left[\frac{\delta dn_{EV}}{dn_{EV}}\right]^{2} + \left[\frac{\delta RVS_{EV}}{RVS_{EV}}\right]^{2} + \left[\delta k_{INST} \cdot (T_{INST\_EV} - T_{INST\_SD})\right]^{2} + \left[\delta(T_{INST\_EV} - T_{INST\_SD}) \cdot k_{INST}\right]^{2}$$



#### Solar Diffuser Contributions to RSB Calibration Uncertainty (%)

|    | Error Sources                          | SBRS | MCST (I) | MCST (II) |
|----|----------------------------------------|------|----------|-----------|
| 1  | NIST reference:                        | 0.50 | 0.50     |           |
| 2  | SBRS scattering goniometer:            | 0.70 | 0.70     |           |
| 3  | NIST BRF scale to MODIS SD reference:  | 0.50 | 0.50     |           |
| 4  | MODIS SD characterization:             | 0.50 | 0.50     |           |
| 5  | SD spatial non-uniformities:           | 0.70 | 0.35     |           |
| 6  | Interpolation angular / spectrally:    | 0.10 | 0.10     |           |
| 7  | Pre-launch to on-orbit SD BRF change:  | 0.50 | 0.50     |           |
| 8  | SD screen (SDS):                       | 0.20 |          | 0.50      |
| 9  | SDSM and SDS impact:                   | 0.50 | 0.50     |           |
| 10 | Solar illumination of the SD surrounds | 0.30 |          | 0.50.0.80 |
| 11 | Earthshine through the SD door         | 0.30 |          | 0.50-0.80 |
| 12 | Earthshine through nadir aperture door | 0.10 | 0.00     |           |
|    | RSS                                    | 1.57 | 1.37     |           |

#### Apply only to bands using SDS

SBRS: Santa Barbara Remote Sensing

#### Terra MODIS RSB Calibration Uncertainty (%)

| В  | BRF  | SDS  | ES_SD | Δ_SD | dn_SD | dn_EV | T_inst | K_inst | RVS_1 | RVS_2 | SWIR | RSS  | RSS  |
|----|------|------|-------|------|-------|-------|--------|--------|-------|-------|------|------|------|
| 1  | 1.37 | 0.00 | 0.60  | 0.30 | 0.06  | 0.53  | 0.04   | 0.06   | 0.20  | 0.25  | 0.00 | 1.65 | 1.81 |
| 2  | 1.37 | 0.00 | 0.80  | 0.30 | 0.05  | 0.21  | 0.06   | 0.17   | 0.15  | 0.27  | 0.00 | 1.67 | 1.78 |
| 3  | 1.37 | 0.00 | 0.50  | 0.47 | 0.04  | 0.33  | 0.02   | 0.22   | 0.20  | 0.31  | 0.00 | 1.62 | 1.76 |
| 4  | 1.37 | 0.00 | 0.50  | 0.32 | 0.04  | 0.32  | 0.02   | 0.04   | 0.10  | 0.27  | 0.00 | 1.56 | 1.68 |
| 5  | 1.37 | 0.00 | 0.80  | 0.25 | 0.09  | 1.47  | 0.00   | 0.16   | 0.03  | 0.00  | 1.00 | 2.40 | 2.57 |
| 6  | 1.37 | 0.00 | 0.80  | 0.25 | 0.06  | 0.27  | 0.01   | 0.08   | 0.03  | 0.00  | 1.00 | 1.91 | 2.08 |
| 7  | 1.37 | 0.00 | 0.80  | 0.25 | 0.09  | 1.00  | 0.03   | 0.18   | 0.03  | 0.00  | 1.00 | 2.15 | 2.43 |
| 8  | 1.37 | 0.50 | 0.50  | 0.59 | 0.22  | 0.10  | 0.05   | 0.03   | 0.20  | 0.56  | 0.00 | 1.77 | 1.78 |
| 9  | 1.37 | 0.50 | 0.50  | 0.52 | 0.14  | 0.07  | 0.02   | 0.18   | 0.20  | 0.27  | 0.00 | 1.68 | 1.68 |
| 10 | 1.37 | 0.50 | 0.50  | 0.43 | 0.11  | 0.07  | 0.02   | 0.06   | 0.07  | 0.19  | 0.00 | 1.62 | 1.62 |
| 11 | 1.37 | 0.50 | 0.50  | 0.35 | 0.10  | 0.06  | 0.02   | 0.07   | 0.20  | 0.22  | 0.00 | 1.61 | 1.61 |
| 12 | 1.37 | 0.50 | 0.50  | 0.33 | 0.09  | 0.08  | 0.02   | 0.02   | 0.20  | 0.22  | 0.00 | 1.61 | 1.61 |
| 13 | 1.37 | 0.50 | 0.60  | 0.30 | 0.06  | 0.08  | 0.02   | 0.01   | 0.20  | 0.00  | 0.00 | 1.62 | 1.62 |
| 14 | 1.37 | 0.50 | 0.60  | 0.30 | 0.06  | 0.07  | 0.02   | 0.01   | 0.20  | 0.00  | 0.00 | 1.62 | 1.62 |
| 15 | 1.37 | 0.50 | 0.60  | 0.30 | 0.09  | 0.07  | 0.03   | 0.07   | 0.20  | 0.00  | 0.00 | 1.62 | 1.62 |
| 16 | 1.37 | 0.50 | 0.80  | 0.29 | 0.08  | 0.09  | 0.02   | 0.14   | 0.15  | 0.00  | 0.00 | 1.71 | 1.71 |
| 17 | 1.37 | 0.00 | 0.80  | 0.25 | 0.02  | 0.29  | 0.01   | 0.03   | 0.10  | 0.00  | 0.00 | 1.64 | 1.72 |
| 18 | 1.37 | 0.00 | 0.80  | 0.25 | 0.03  | 1.13  | 0.02   | 0.09   | 0.15  | 0.00  | 0.00 | 1.97 | 2.02 |
| 19 | 1.37 | 0.00 | 0.80  | 0.25 | 0.02  | 0.20  | 0.01   | 0.02   | 0.15  | 0.00  | 0.00 | 1.63 | 1.72 |
| 26 | 1.37 | 0.00 | 0.80  | 0.25 | 0.04  | 0.41  | 0.02   | 0.15   | 0.03  | 0.00  | 1.00 | 1.94 | 2.07 |

Before July 2, 2003

After July 2, 2003

#### Aqua MODIS RSB Calibration Uncertainty (%)

| В  | BRF  | SDS  | ES_SD | $\Delta_{SD}$ | dn_SD | dn_EV | T_inst | K_inst | RVS_1 | RVS_2 | SWIR | RSS  |
|----|------|------|-------|---------------|-------|-------|--------|--------|-------|-------|------|------|
| 1  | 1.37 | 0.00 | 0.60  | 0.22          | 0.05  | 0.53  | 0.06   | 0.09   | 0.25  | 0.22  | 0.00 | 1.64 |
| 2  | 1.37 | 0.00 | 0.80  | 0.10          | 0.05  | 0.20  | 0.05   | 0.09   | 0.50  | 0.10  | 0.00 | 1.69 |
| 3  | 1.37 | 0.00 | 0.50  | 0.22          | 0.04  | 0.33  | 0.04   | 0.06   | 0.47  | 0.15  | 0.00 | 1.59 |
| 4  | 1.37 | 0.00 | 0.50  | 0.21          | 0.04  | 0.32  | 0.03   | 0.04   | 0.47  | 0.11  | 0.00 | 1.59 |
| 5  | 1.37 | 0.00 | 0.80  | 0.04          | 0.07  | 0.68  | 0.02   | 0.07   | 0.03  | 0.00  | 0.50 | 1.80 |
| 6  | 1.37 | 0.00 | 0.80  | 0.04          | 0.05  | 0.21  | 0.02   | 0.04   | 0.03  | 0.00  | 0.50 | 1.68 |
| 7  | 1.37 | 0.00 | 0.80  | 0.04          | 0.07  | 0.67  | 0.02   | 0.13   | 0.03  | 0.00  | 0.50 | 1.80 |
| 8  | 1.37 | 0.50 | 0.50  | 0.34          | 0.20  | 0.09  | 0.08   | 0.03   | 0.16  | 0.28  | 0.00 | 1.63 |
| 9  | 1.37 | 0.50 | 0.50  | 0.27          | 0.13  | 0.07  | 0.04   | 0.01   | 0.13  | 0.20  | 0.00 | 1.59 |
| 10 | 1.37 | 0.50 | 0.50  | 0.20          | 0.10  | 0.07  | 0.03   | 0.01   | 0.14  | 0.13  | 0.00 | 1.57 |
| 11 | 1.37 | 0.50 | 0.50  | 0.18          | 0.09  | 0.07  | 0.03   | 0.02   | 0.16  | 0.12  | 0.00 | 1.57 |
| 12 | 1.37 | 0.50 | 0.50  | 0.20          | 0.09  | 0.09  | 0.03   | 0.02   | 0.17  | 0.11  | 0.00 | 1.57 |
| 13 | 1.37 | 0.50 | 0.60  | 0.21          | 0.06  | 0.09  | 0.04   | 0.09   | 0.22  | 0.00  | 0.00 | 1.61 |
| 14 | 1.37 | 0.50 | 0.60  | 0.21          | 0.05  | 0.09  | 0.05   | 0.13   | 0.21  | 0.00  | 0.00 | 1.61 |
| 15 | 1.37 | 0.50 | 0.60  | 0.18          | 0.07  | 0.09  | 0.06   | 0.14   | 0.23  | 0.00  | 0.00 | 1.62 |
| 16 | 1.37 | 0.50 | 0.80  | 0.09          | 0.07  | 0.10  | 0.07   | 0.23   | 0.23  | 0.00  | 0.00 | 1.70 |
| 17 | 1.37 | 0.00 | 0.80  | 0.04          | 0.02  | 0.28  | 0.03   | 0.07   | 0.20  | 0.06  | 0.00 | 1.63 |
| 18 | 1.37 | 0.00 | 0.80  | 0.04          | 0.03  | 1.11  | 0.03   | 0.08   | 0.23  | 0.08  | 0.00 | 1.95 |
| 19 | 1.37 | 0.00 | 0.80  | 0.04          | 0.02  | 0.20  | 0.02   | 0.05   | 0.23  | 0.07  | 0.00 | 1.62 |
| 26 | 1.37 | 0.00 | 0.80  | 0.04          | 0.04  | 0.37  | 0.04   | 0.37   | 0.03  | 0.00  | 0.50 | 1.75 |

Aqua MODIS SWIR Crosstalk is Much Smaller

## **On-orbit Performance**

- Instrument performance
  - Instrument and focal plane assembly (FPA) temperatures are stable
- Changes of sensor response
  - Changes are wavelength, mirror side, and scan angle dependent (large changes in VIS spectral bands/detectors)
- SD degradation
  - Changes are wavelength dependent (larger degradation at shorter wavelengths)
- Spatial and spectral performance
- Signal-to-noise ratio (SNR)
  - Continue to meet design requirements for most RSB detectors (exceptions for a few noisy and band 8 detectors in recent years)

### Instrument and VIS/NIR FPA Temperatures



Very Stable - less than 4.0 K increase over 11 years for Terra MODIS and less than 2.0 K increase for Aqua MODIS

## **Relative Gain Changes in VIS/NIR Spectral Bands**



Changes are mirror side and AOI dependent; monitored for individual detectors

### Mirror Side Ratios of VIS/NIR Spectral Responses



Small mirror side difference in Aqua VIS spectral bands

**Page 16** 

## **MODIS SD On-orbit Degradation**



T-MODIS SD degradation is much faster with its SD door in "open" position

SDSM covers wavelengths from 0.41 to  $0.94 \mu m$ 

**Page 17** 

## Terra and Aqua MODIS Spectral Characterization



Changes in spectral bandwidths are also very small (typically less than 1.0 nm)

## Terra and Aqua MODIS Spatial Characterization



Similar performance for along-track direction

## Summary

- MODIS continue to operate with satisfactory performance with all on-board calibrators (OBC) continuing to perform the "design" functions
- RSB calibration uses SD/SDSM, lunar observations, and ground targets
  - Large changes in VIS spectral bands
  - Impact due to changes in RVS and polarization sensitivities for VIS spectral bands
- On-orbit spatial and spectral performance remains stable
- Continuous effort from MCST with input from science and user community (bi-weekly MODIS sensor Working Group Meeting)
- Aqua MODIS is more stable and suitable for calibration reference
- Improvements, including uncertainty index (UI) updates, are made in the upcoming Collection 6

## **MODIS Specifications and Applications**

| Primary Use                       | Band | Bandwidth<br>(nm) | Spectral<br>Radiance <sup>1</sup> | Required<br>SNR | Primary Use                                                         | Band | Bandwidth (mm)  | Spectral<br>Radiance <sup>1</sup> | Required<br>NEDT(K) |  |
|-----------------------------------|------|-------------------|-----------------------------------|-----------------|---------------------------------------------------------------------|------|-----------------|-----------------------------------|---------------------|--|
| Land/Cloud/Aerosols               | 1    | 620 - 670         | 21.8                              | 128             |                                                                     | 20   | 3.660 - 3.840   | 0.45 (300K)                       | 0.05                |  |
| Boundaries                        | 2    | 841 - 876         | 24.7                              | 201             | Surface/Cloud                                                       | 21   | 3.929 - 3.989   | 2.38 (335K)                       | 0.2                 |  |
|                                   | 3    | 459 - 479         | 35.3                              | 243             | Temperature                                                         | 22   | 3.929 - 3.989   | 0.67 (300K)                       | 0.07                |  |
|                                   | 4    | 545 - 565         | 29                                | 228             |                                                                     | 23   | 4.020 - 4.080   | 0.79 (300K)                       | 0.07                |  |
| Land/Cloud/Aerosols<br>Properties | 5    | 1230 - 1250       | 5.4                               | 74              | Atmospheric<br>Temperature                                          | 24   | 4.433 - 4.498   | 0.17 (250K)                       | 0.25                |  |
|                                   | 6    | 1628 - 1652       | 7.3                               | 275             |                                                                     | 25   | 4.482 - 4.549   | 0.59 (275K)                       | 0.25                |  |
|                                   | 7    | 2105 - 2155       | 1                                 | 110             | Cirrus Clouds Water<br>Vapor                                        | 26   | 1.360 - 1.390   | 6                                 | 150 (SNR)           |  |
|                                   | 8    | 405 - 420         | 44.9                              | 880             |                                                                     | 27   | 6.535 - 6.895   | 1.16 (240K)                       | 0.25                |  |
|                                   | 9    | 438 - 448         | 41.9                              | 838             |                                                                     | 28   | 7.175 - 7.475   | 2.18 (250K)                       | 0.25                |  |
|                                   | 10   | 483 - 493         | 32.1                              | 802             | Cloud Properties                                                    | 29   | 8.400 - 8.700   | 9.58 (300K)                       | 0.05                |  |
| Ocean Color/                      | 11   | 526 - 536         | 27.9                              | 754             | Ozone                                                               | 30   | 9.580 - 9.880   | 3.69 (250K)                       | 0.25                |  |
| Phytoplankton/                    | 12   | 546 - 556         | 21                                | 750             | Surface/Cloud<br>Temperature<br>Cloud Top Altitude                  | 31   | 10.780 - 11.280 | 9.55 (300K)                       | 0.05                |  |
| Biogeochemistry                   | 13   | 662 - 672         | 9.5                               | 910             |                                                                     | 32   | 11.770 - 12.270 | 8.94 (300K)                       | 0.05                |  |
|                                   | 14   | 673 - 683         | 8.7                               | 1087            |                                                                     | 33   | 13.185 - 13.485 | 4.52 (260K)                       | 0.25                |  |
|                                   | 15   | 743 - 753         | 10.2                              | 586             |                                                                     | 34   | 13.485 - 13.785 | 3.76 (250K)                       | 0.25                |  |
|                                   | 16   | 862 - 877         | 6.2                               | 516             |                                                                     | 35   | 13.785 - 14.085 | 3.11 (240K)                       | 0.25                |  |
|                                   | 17   | 890 - 920         | 10                                | 167             |                                                                     | 36   | 14.085 - 14.385 | 2.08 (220K)                       | 0.35                |  |
| Atmospheric Water<br>Vapor        | 18   | 931 - 941         | 3.6                               | 57              | <sup>1</sup> Spectral Radiance values are (W/m <sup>2</sup> -µm-sr) |      |                 |                                   |                     |  |
|                                   | 19   | 915 - 965         | 15                                | 250             |                                                                     |      |                 |                                   |                     |  |

- 20 reflective solar bands (RSB: bands 1-19, and 26) from 0.41 - 2.2 $\mu$ m

- 16 thermal emissive bands (TEB: bands 20-25, 27-36) from 3.5 - 14.4 $\mu$ m