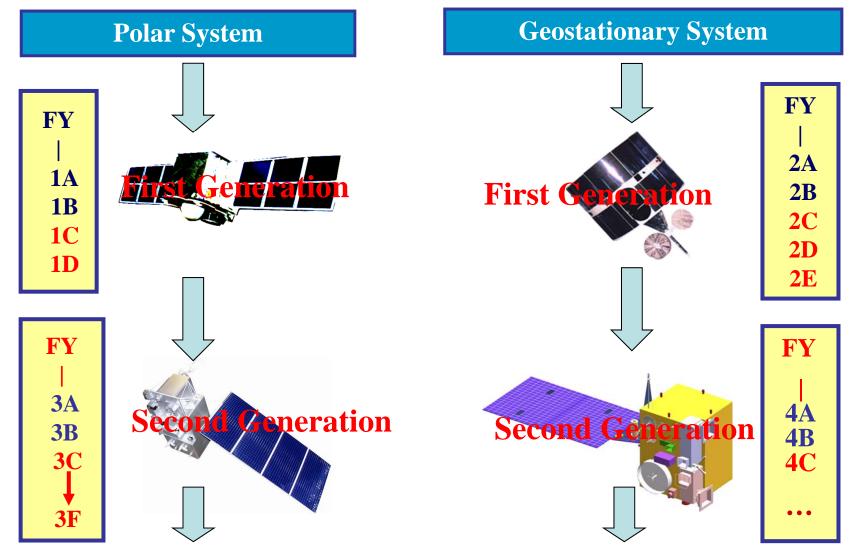

The status and future plan of Yengyun(FY) meteorological Satelltes

Peng ZHANG

National Satellite Meteorological Center, CMA

High Level Working Group on Satellite Matters


Outline

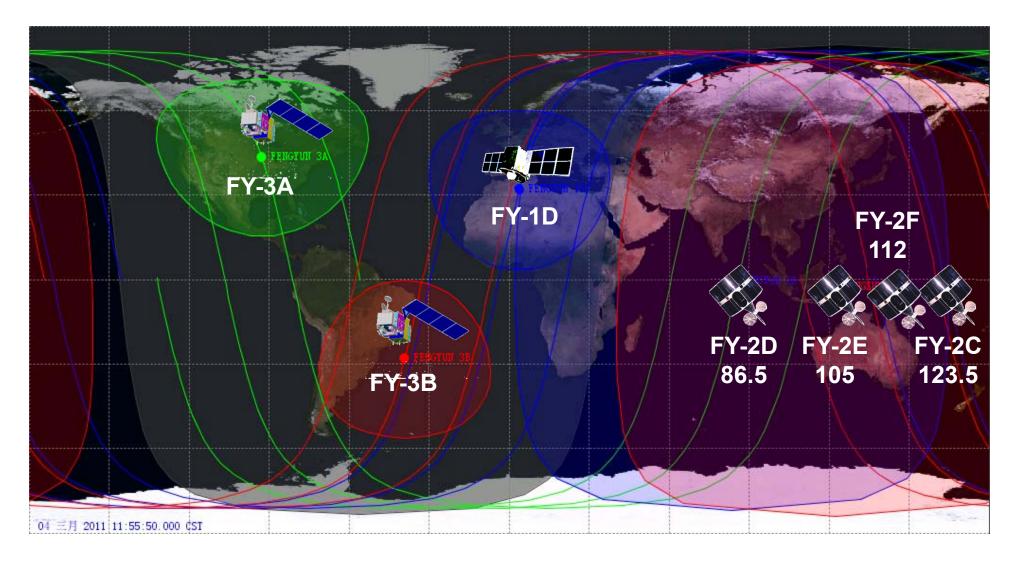
Current Status

- Future Plan for LEO
- Future Plan for GEO
- Conclusions

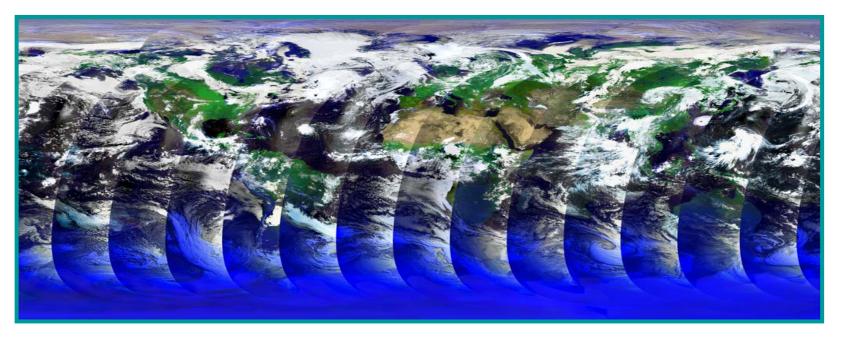
1. Current Status

FengYun Meteorological Satellites

Launched Satellites



Since Jan. 19	Since Jan. 1969, China began to develop his own meteorological Satellite				
Leo	Launch Data		Geo	Launch Data	
FY-1A	Sept. 7, 1988		FY-2A	Jun. 10, 1997	
FY-1B	Sept. 3, 1990		FY-2B	Jun. 25, 2000	
FY-1C	May 10, 1999		FY-2C	Oct. 18, 2004	
FY-1D	May 15, 2002		FY-2D	Dec. 8, 2006	
FY-3A	May 27, 2008		FY-2E	Dec. 23, 2008	
FY-3B	Nov 5, 2010		FY-2F	Jan. 13, 2012	



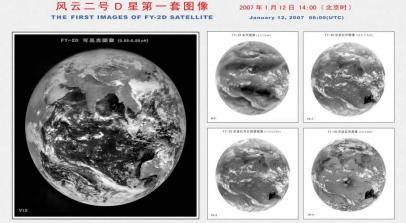
On-orbit Satellites

FengYun LEO. Satellites: FY-1

Instruments:

✓10 chl. Visible and Infrared radiometer.

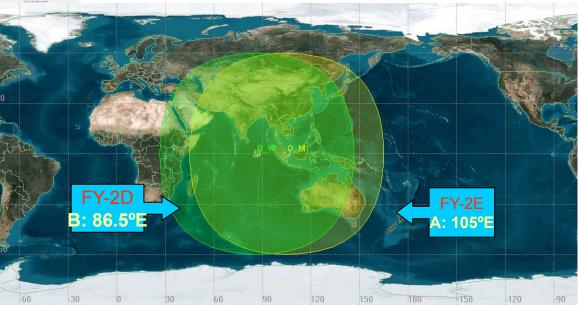
✓ Space Environment Monitor Transimission:


✓ HRPT: 1.3308Mbps (DB)

✓ GDPT: 1.3308Mbps

No.	Status	Launch	Druation
FY-1A	Exp. (dead)	Sept.7, 1988	6 months
FY-1B	Exp. (dead)	Sept.3, 1900	8 months
FY-1C	Op. (dead)	May 10, 1999	>7 years
FY-1D	Op. (working)	May 15, 2002	>7 years

FengYun GEO. Satellites: FY-2

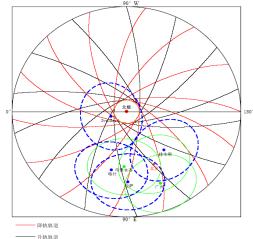


No.	Pos.	Status	Launch
FY-2A	105E	Exp. (dead)	Jun.10, 1997
FY-2B	105E	Exp. (dead)	Jun.20, 2000
FY-2C	105E	Op. (working)	Oct.18, 2004
FY-2D	86.5E	Op. (working)	Dec.8, 2006
FY-2E	105E	Op. (Stored)	Dec.23,2008

○ 中田气象局

Platform: Spin stabilization Payload: 5 chl. VISSR Full Disc: every 30 min. at most

- ✓ FY-2E & FY-2D are working together to implement 15 min. interval obs.
- ✓ FY-2E takes over FC-2C in DEC., 2009!



FengYun LEO. Satellites: FY-3



11 instruments on board FY-3A/B, including: VIRR: Visible and Infra-Red Radiometer MERSI: Medium Resolution Spectral Imager IRAS: Infrared Atmospheric Sounder MWTS: MicroWave Temperature Sounder MWHS: MicroWave Humidity Sounder MWRI: MicroWave Radiation Imager SBUS: Solar Backscatter Ultraviolet Sounder TOU: Total Ozone mapping Unit SIM: Solar Irritation Monitor ERM: Earth Radiation Monitor SEM: Space Environment Monitor

Station Name	Longitude	Latitude
Beijing Station	116° 16′36″ E	40° 03′ 06″ N
Guangzhou Station	113° 20′20″ E	23° 09′ 52″ N
Wulumuqi Station	87° 34'08″ E	43° 52′17″ N
Jiamusi Station	130° 22′ 48″ E	46° 45′ 20″ N
Kiruna Station	21° 02′ E	67° 32′ N

2. Future Plan for LEO

FY-3 OPERATIONAL SATELLITE INSTRUMENTS	FY-3C	FY-3D	FY-3E	FY-3F
MERSI – Medium Resolution Spectral Imager (I, II)	√(I)	√(II)	√(II)	√(II)
MWTS – Microwave Temperature Sounder (II)	\checkmark	\checkmark	\checkmark	\checkmark
MWHS – Microwave Humidity Sounder (II)	\checkmark	\checkmark	\checkmark	\checkmark
MWRI – Microwave Radiation Imager	\checkmark	\checkmark		\checkmark
WindRAD - Wind Radar			\checkmark	
GAS - Greenhouse Gases Absorption Spectromete		\checkmark		\checkmark
HIRAS – Hyperspectral Infrared Atmospheric Sounder		\checkmark	\checkmark	\checkmark
OMS – Ozone Mapping Spectrometer			\checkmark	
GNOS – GNSS Occultation Sounder	\checkmark	\checkmark	\checkmark	
ERM – Earth Radiation Measurement (I, II)	√(I)		√(II)	
SIM – Solar irritation Monitor (I, II)	√(I)		√(II)	
SES – Space Environment Suite	\checkmark	\checkmark	\checkmark	\checkmark
IRAS – Infrared Atmospheric Sounder	\checkmark			
VIRR – visible and Infrared Radiometer	\checkmark			
SBUS – Solar Backscattered Ultraviolet Sounder	\checkmark			
TOU – Total Ozone Unit	\checkmark			

FY-3 series is expected to last its measurements at least 15 years with additional four satellites. There are 16 improved or new instruments will be configured from FY-3C to FY-3F in the schedule.

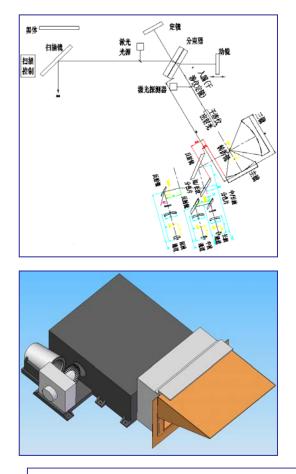
Improved Instruments

MERSI II will increase the channels from 20 to 25 after merging the VIRR channels

- **MWTS** II will increase the channels from 4 to 13
- **MWHS** II will increase the channels from 5 to 15
- **SIM** II can track the Solar disk automatically to improve the accuracy of the measured Solar constant
- **ERM** II will increase one broad channel to measure the outgoing longwave radiance directly

New Instruments

HIRAS (Hyperspectral Infrared Atmospheric Sounder) is an IASI/Metop-like instrument to improve the measured temperature and moisture profile instead of the IRAS


OMS (Ozone Mapping Spectrometer) is a SCIAMACHY/Envisatlike instrument to detect the ozone and the other atmospheric chemical species as well instead of the suite of TOU and SBUS. The total column content and the profile of trace gases can be retrieved from the nadir view and limb view separatively.

WindRAD (Wind Radar) will measure the sea wind

GAS (Greenhouse Gases Absorption Spectrometer) will measure the CO2 and CH4 globally

GNOS (GNSS Occultation Sounder) will improve the measured temperature and moisture profile at the upper atmosphere

HIRAS Specification

Specification	LWIR Band	MWIR Band	SWIR Band	
Spectral Range	650 – 1136 cm-1	1210 – 1750 cm-1	2155-2550 cm-1	
Spectral Res	0.625 cm-1	1.25 cm-1	2.5 cm-1	
NE∆T @250K	0.15~0.4K	0.1~0.7K	0.3~1.2K	
pixes per scan line	58			
Scan Angle	\pm 50.4 $^{\circ}$ around nadir			
Spatial Res	1.1 degrees (16.0km) IFOV at arranged in 2 $ imes$ 2 array			
Power/Mass	129watts/120kg			

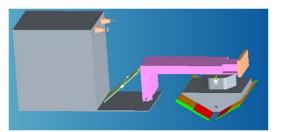
HIRAS/FY-3: Michelson interferometer Aims: global temperature and moisture sounding from the infrared spectrum from 650 to 2550 cm-1

- 1) retrieving atmospheric temperature and humidity profiles with high accuracies for numerical weather prediction and climate research at high vertical resolution.
- 2) Trace gases to be derived from HIRAS include ozone columnar amounts in deep layers and columnar amounts of carbon monoxide, nitrous oxide, methane, and carbon dioxide.
- 3) Cloud parameters .

26-12-0-0

OMS

OMS/FY-3:

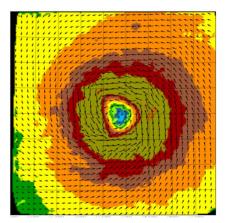

- total column ozone mapping
- ozone profiler which includes nadir ozone profiler and limb ozone profiler
- the high spectral resolution OMS will replace the former UV ozone instruments TOU and SBUS flown on FY-3A/B/C

Aims: global total column ozone and profile, global total amount of SO2, NO2 and aerosol optical properties such as aerosol index, optical depth

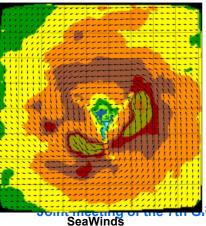
	Nadir de	etection	Limb detection
	Total column amount	Vertical profile	
Spectral range	300~500nm	250~310nm	290-500nm
Scientific purpose	O_3 , NO ₂ , SO ₂ , HCHO, BrO, OClO, aerosol	O ₃ profile	O ₃ 、NO ₂ 、SO ₂ 、HCHO、BrO、 OClO、stratospheric aerosol profiles
Spectral resolution	300~365nm×0.4nm 365~500nm×0.6nm	250~310nm×0.4nm	290-500nm×0.6nm
Spatial resolution	15 (along track) ×25 (cross track) km	34 (along track) ×60 (cross track) km	3km
Field of view	112°	2.3 ° (along track) ×0.045 ° (cross track)	2.3 ° (along track) ×0.045 ° (cross track)
Dynamic range	104	105	105

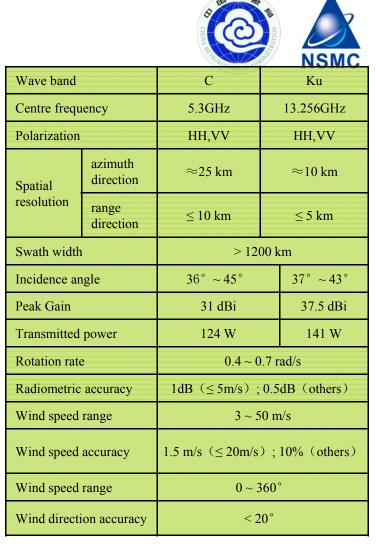
WindRAD

The Wind Radar monitors Global ocean surface wind field (OSWF) from space. The wind radar will measure the radar backscattering of sea surface from different azimuth and then retrieve wind vector with the geophysical model function (GMF). The OSWF data will significantly contribute to improve weather forecast, especially numerical model prediction of typhoon tracks and landfalls.



Wind Radar




Measurement geometry of Wind Radar

The four antennae (two polarization of each frequency) of Wind Radar rotate slowly around the vertical axis of spin platform, and each pixel within the swath will be illuminated from more azimuth directions than the existing spaceborne sactterometers due to the low rotation rate .

Wind Radar

Expected performance of the Wind Radar

•Better spatial resolution than the current spaceborne scatterometers;

•High wind retrieval capability ;

•Nearly all-weather capability .

GAS

Aims

Improve our understanding on the Spatial & temporal distribution of global CO₂

Monitoring the CO₂ variation on seasonal scales

Expected Performance CO2 retrieval precision: 1~4 ppm

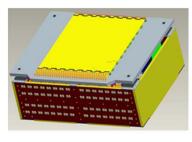
	Greenhouse gases Absorption Spectrometer					
Band	1	1 2		4		
Spectrum	0.75-0.77μm	1.56-1.72μm	1.92-2.08μm	2.20-2.38μm		
target	O ₂ -A	$CO_2 CH_4 (H_2O)$	CO_2 (H ₂ O)	CH_{4} , CO , $N_{2}O$		
Spectrum res.	0.6 cm ⁻¹	0.27 cm ⁻¹	0.27 cm ⁻¹	0.27 cm ⁻¹		
S/N		>300:1				
Cal. Error	<2%					
IFOV		0.68	85°			

GNOS

GNOS will receive two types of signal from GPS and China BeiDou-2. GNOS will observe over 1000 occultations per day with GPS and BD satellites,

Expected Products

- Temperature profiles
- Humidity profiles
- Refractivity profiles
- Electronic content profiles



Frequency	GPS L1/L2; BD2			Temperatu re	Humidity	Refracti vity	Electronic Content
Receiver Channels	8 (Navigation) 4 (Occultation)		Low Tropos.	0.5-3 k	0.25-1.0 g/kg	0.1- 0.5%	
Sampling rate	$1 \sim 50 \; Hz$	RMS	High Tropos.	0.5-3 k	0.05-0.2 g/kg	0.1-0.2%	(100-600 km) < 20%
Crystal oscillator	1e-11 (100s)	Accuracy	Low Stratos.	0.5-3 k		0.1-0.2%	
Real-time position	10m (RMS)		High Stratos.	0.5-5 k		0.2-2.0%	
Real-time velocity	0.1m/s(RMS)						
Phase center accuracy	2 mm (RMS)						
Antenna number	1 (Navigation) 2 (Occultation)	GNOS i	nstrumen	t	GNOS of	servatio	

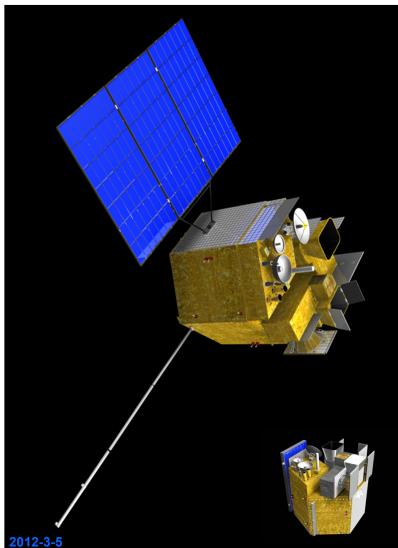
With a main objectives of RM satellite

- Consist a Global observation constellation system with FY3-2 AM and PM satellites, as well as GPM satellite
- Improve the severe convective system monitoring ability in china together with GPM satellite
- Provide 3D precipitation structure over both ocean and land
- Improve the sensitivity and accuracy of precipitation measurement over china and surrounding area


KaPR

KuPR

MWHS



MWTS

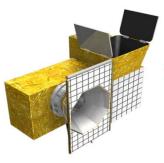
3. Future Plan for GEO

FY-4A

Main Instruments 1)GIIRS: Geo. Interferometric Infrared Sounder 2) AGRI: Advanced Geosynchronous Radiation Imager 3) LMI: Lightning Mapping Imager

4) SEP: Space Environment Package

Spacecraft:


- 1. Launch Weight: approx 5300kg
- 2. Stabilization: Three-axis
- 3. Attitude accuracy: 3"
- 4. Bus: 1553B+Spacewire
- 5. Raw data transmission : X band
- of the 7th GRWG and the 6th GDWG 3200W

Comparison between FY-2 & FY-4 🤯

	FY-4A	FY-2 Op series	
Stabilization	Three-axis	Spin	
Design Life	7 Year, Operation 5 Year	3 Year	
Observation Efficiency	85%	5%	
Observation Mode	Imaging +Sounding + Lightning Mapping	Imaging Only	
	AGRI :14 channels SSP Resolution: 0.5~4Km Global imaging: 15min Flexible imaging : 2D	VISSR: 5 channels SSP Resolution: 1.25~5Km Global imaging: 30min Flexible imaging: 1D	
Main Instruments	GIIRS:913 channels Spectral Resolution: 0.8,1.6cm-1 SSP Resolution:16Km	N/A	
	LMI SSP Resolution:7.8Km	N/A	
R ଌ୍ୟାଞ୍ଚା ରନ 201108	SEU High energy particles Magnetic field	SEU High energy particles Solar X ray fluxes 19	

AGRI: Advanced Geo. Radiation Imager

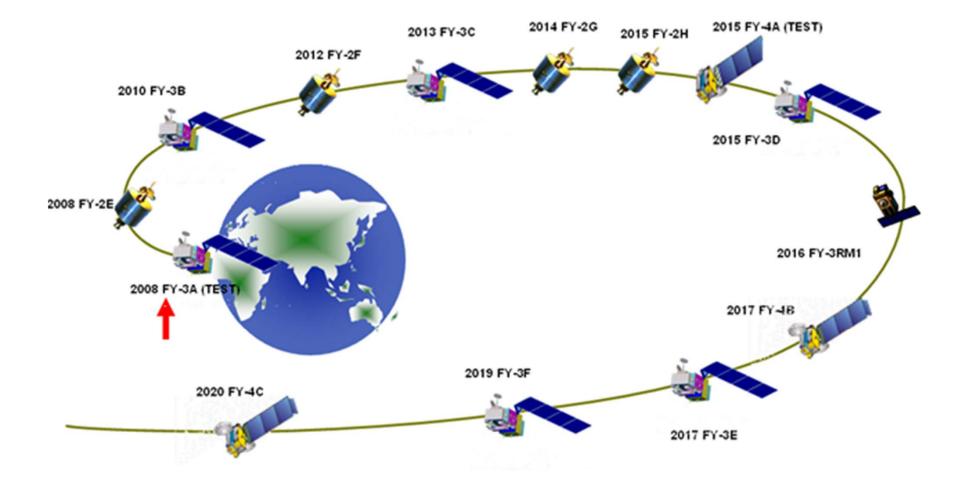
14 Channels within 0.55~13.8µm for first satellite FY-4A

Channel	Band (<i>µm)</i>	Spatial Resolution (Km)	Detection Sensitivity		Main Application
	0.45~0.49	1		70(p=100%)	Aerosol
Visible &	0.55~0.75	0.5~1	S/N≥	200(p=100%),5	Fog,Clound
Near-Infrared	0.75~0.90	1	C	(ρ=1%)@0.5K m	Vegetation
Shortwaya	1.36~1.39	2		200(a-100%)	Cirrus
Short-wave Infrared	1.58~1.64	2	S/N≥	200 (ρ=100%) 5 (ρ=1%)	Cloud,Snow
IIIIaieu	2.1~2.35	2~4		5 (p=170)	Cirrus,Aerosol
Mid-wave	$3.5{\sim}4.0$ (high)	2	ΝΕΔΤ	[−] ≤0.7K(300K)	Fire
Infrared	3.5~4.0(low)	4	ΝΕΔΤ	⁻ ≤0.2K(300K)	Land surface
Water Vapor	5.8~6.7	4	ΝΕΔΤ	⁻ ≤0.3K(260K)	WV
vvalet vapor	6.9~7.3	4	ΝΕΔΤ	⁻ ≤0.3K(260K)	WV
	8.0~9.0	4	ΝΕΔΤ	=0.2K(300K)	WV,Cloud
Long-wave	10.3~11.3	4	ΝΕΔΤ	=0.2K(300K)	SST
Infrared	11.5~12.5	4	ΝΕΔΤ	=0.2K(300K)	SST
	13.2~13.8	4	ΝΕΔΤ	=0.5K(300K)	Cloud,WV


GIIRS: Geo. Interferometric Infrared Sounder

	FY-4A (R&D)	FY-4B (Operational)
Spectral Parameters	RangeResolutionChannelsLWIR:700-11300.8538S/MIR:1650-22501.6375	RangeResolutionChannelsLWIR:700-11300.625688S/MIR:1650-22501.2500
Spatial Resolution	At Nadir: 16Km IFOV: 448µrad	At Nadir: 8Km IFOV: 224µrad
Operational Mode	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Temporal Resolution	China area1 hrMesoscale area½ hr	China area1 hrMesoscale area½ hr
Sensitivity (mW/m2sr cm-1)	LWIR: 0.5 S/MIR: 0.1	LWIR: 0.3 S/MIR: 0.06
Calibration accuracy	1.5k (3σ) radiation	1.0k (3σ)
Calibration accuracy	10 ppm (3σ) spectrum	5 ppm (3σ)
Quantization Bits	13 bits	13 bits

LMI: Lighting Mapping Imager



Prototype structure for LMI

4. Conclusion

Current: FY-3 Operational Products (42)

Cloud & Radiation Atmosphere Land Ocean Space

Instrument	Cloud and Radiation (10)	Atmosphere (12)	Land (13)	Ocean (4)	Space (3)
VIRR	 Cloud Mask Cloud Classification Cloud Properties OLR 	 Precipitable Water Amount Aerosol Properties Dust Storm Monitoring Fog Monitoring 	 Snow Cover Surface Reflectance LST NDVI Hot Spot Monitoring 	 Ocean Color Sea Ice Monitoring SST 	
MERSI	Cloud Mask	 Precipitable Water Amount Aerosol Properties 	 Snow Cover Surface Reflectance NDVI 		
IRAS/MWTS/MWHS	 OLR Clear-sky Radiance Equivalent Rain Cloud Mask 	 Atmospheric Temperature/Moistur e Profile 			
MWRI		 Precipitation Water Cloud Content Precipitable Water Amount 	 Drought/Flood Index Snow Depth Snow Water Equivalent Soil Moisture, LST 	 Sea Ice Monitoring 	
TOU/SBUS		Total Ozone AmountOzone Profile			
ERM/SIM	 Solar Constant Earth Outgoing Radiance 				
SEM					ProtonElectronHeavy Ion
12_3_5		loint meeting of the 7th GRV	NG and the 6th GDWG		4

Future: FY-3 follow-on Operational Products (38)

Cloud & Radiation Atmosphere Land Ocean Space

	Cloud and Radiation (7)	Atmosphere (18)	Land (7)	Ocean (2)	Space (4)
MERSI II	 Cloud Mask Cloud Classification Cloud Properties OLR 	• Polar Wind	 Leaf Area Index Surface Albedo Photosynthesis Effective Radiation Coefficient NPP Land Cover LST Snow Cover 	 Ocean Color SST 	
IRAS/MWTS II/MWHS II		Atmospheric Temperature/Moisture Profile			
HIRAS/MW TS II/MWHS II	 OLR Clear-sky Radiance Equivalent Ice Cloud Content Index 	 Atmospheric Temperature/Moisture Profile Total Ozone Amount CO₂ Amount CH₄ Amount Atmospheric Unstability Tropical Cyclone Intensity 			
MWRI OMS		 Sea Surface Wind Total Ozone Amount SO₂ Amount NO₂ Amount Aerosol Index Ozone Profile 			
GNOS		Upper Atmospheric Temperature/Moisture Profile			• TEC
WindRAD GAS		 Sea Surface Wind CO₂ Amount CH₄ Amount, CO Amount 			
SEM II Suite (SEM/WAI/I PM)					 Radiation Dosage Ionosphere Measurement Vertical TE25

Current: FY-2 Operational Products

Imaging Atmosphere Weather Radiation Land Water No **Products** No. **Products** No. **Products** 1 **Raw image** 10 19 SST Rainfall estimation 2 Normalized image 11 20 Precipitable water Snow cover 3 **Projected image** 12 21 AMV Sea ice monitor 4 13 22 Mosaic image Typhoon location Fire spots 5 Cloud classification 14 23 Upper troposphere Water bodies Humidity 6 15 24 Total cloud amount Cloud water profile Soil humidity 25 7 16 **ISCCP** dataset Sand storm detection OLR 17 8 Heavy fog monitor TBB 18 9 Solar irradiance Precipitation index

Future: FY-4 Operational Products

Atmosphere Weather Radiation Land

Water Space

No .	Products	No.	Products	No.	Products
1	Clear Sky Masks	10	Downward Longwave Radiation: Surface	19	Rainfall Rate/QPE
2	Cloud Top Height	11	Upward Longwave Radiation: TOA	20	Convective Initiation
3	Cloud Top Temperature	12	Upward Longwave Radiation: Surface	21	Tropopause Folding Turbulence Prediction
4	Cloud Top Pressure	13	Reflected Shortwave Radiation: TOA	22	Sea Surface Temperature (skin)
5	Cloud Optical Depth	14	Downward Shortwave Radiation: Surface	23	Fire/Hot Spot Characterization
6	Cloud Liquid Water	15	Legacy Vertical Moisture Profile	24	Land Surface (Skin) Temperature
7	Cloud Particle Size Distribution	16	Ozone Profile & Total	25	Land Surface Emissivity
8	Aerosol Detection (including Smoke and Dust)	17	Derived Motion Winds	26	Snow Cover
9	Aerosol Optical Depth	18	Lightning Detection	27	SPACE AND SOLAR products

Conclusion

FY series have been utilized in weather analysis, numerical weather forecasting, climate prognosticating, and environment and disaster monitoring broadly.

FY-2D and FY-2E have constituted the Geo constellation to provide the regional observation in 15 minutes maximum.

FY-3A and FY-3B have constituted the Leo constellation to provide the global observation of the Earth 4 times per day.

The innovation analysis between observation and the simulation from the ECMWF Integrated Forecasting System has shown the FY-3 data to be of good quality overall.