Providing Consistent Solar Channel Radiometry for the ATSR series

Dave Smith, Caroline Cox and Caroline Poulsen

VIS-SWIR Channels on ATSR Series

Band Centre	Bandwidth	Function	ATSR-1	ATSR-2	AATSR	
						/
555nm	20nm	Chlorophyll	N	Y	Y	
659nm	20nm	Vegetation Index	N	Y	Y	
870nm	20nm	Vegetation Index	N	Y	Y	
1600nm	60nm	Clouds	Y	Y	Y	
VISCAL			N	Y	Y	

VISCAL System

 ATSR-2 introduced a prototype VISCAL system which provides a calibration reference proportional to the solar irradiance, so

$$R_{scene} \cos \theta_0 = R_{viscal} \frac{(C_{scene} - C_{dark})}{(C_{viscal} - C_{dark})}$$

- AATSR has a developed version of the VISCAL system
 - Improved stray light baffling
 - Wider field of view for diffuser

Calibration Budget

Calibration Budget		RALS	pace
Component	Expression	Source	Uncertainty
Reflectance Factor For VISCAL	∆r _{viscal}	Pre-Launch Calibration Diffuser BRDF Relay Mirror Reflectances UV window transmission VISCAL geometry	3%
Degradation of VISCAL Reflectance Factor	∆r _{drift}	Post-Launch Vicarious Calibration	1%
Orbital Gain Stability	∆r _{orbit}	By design & Pre-Launch Testing	0.1%
Signal Channel Noise (VISCAL Source Signal) Signal Channel Noise (VISCAL Dark	∆r _{noise,viscal}	Measured from On-Board Sources	<0.01%
Signal)	$\Delta r_{noise, dark}$	Measured from On-Board Sources	<0.01%
Signal Channel Noise (Scene Signal)	$\Delta r_{noise,scene}$	Measured from On-Board Sources	<0.01%
Signal Channel Noise (Dark Signal)	Δr _{noise,dark}	Measured from On-Board Sources	<0.01%
Non-Linearity	Δr _{nonlin}	Pre-Launch Calibration	1%
Total Uncertainty	∆r _{scene}		

Total Uncertainty	ΔL _{scene}		
		Spectral Response (Pre-Launch)	
Solar Irradiance Error	ΔI _o	Solspec Reference Spectrum	2%

Calibration over stable targets

- ATSR-2 and AATSR carry in-flight systems for calibrating the VIS-SWIR channels.
- Quasi stable desert and ice targets allow monitoring of long-term stability and comparisons between sensors (e.g. AATSR, MERIS, MODIS)

Site selection criteria: Uniform reflectance over large area

Long term-radiometric stability of the calibration sites

Ensures long-term stability of the top-of-the atmosphere (TOA) albedo (and of seasonal variations, if any) or reflectance over large spatially uniform areas.

High surface reflectance to maximise the signal-to-noise and minimise atmospheric effects on the radiation measured by the satellite

RAL Space

AATSR Drift Analysis

To obtain drift we compare measured BRF against reference BRF for all sites

Trend is obtained by averaging drift for all sites of 90day window filtering for values <2sigma from mean.

AATSR drift does not follow linear trend as originally expected – suggests a more complex model for drift

Results provide input to drift correction look-up-table

RAL Space

AATSR Drift Corrections

- For AATSR L1b images it is advised to remove existing drift corrections (based on early analysis) and use the drift correction lookup-table and tools available on-line to users via CEOS cal-val portal http://calvalportal.ceos.org/cvp/web/guest/aatsr-envisat
- IDL tools have been developed to identify and implement appropriate corrections to L1B products
 - AATSR_CORRECT_V16_NONLINEARITY.PRO
 - corrects 1.6um nonlinearity if not already implemented.
 - AATSR_REMOVE_DRIFT_CORRECTION.PRO
 - removes existing drift correction to allow the latest and best drift corrections to be applied
 - AATSR_APPLY_DRIFT_CORRECTION.PRO
 - Applies the drift correction using a look up-table containing the measured drift for each channel
- These correction tools have also been implemented as BEAM extensions.
- Next AATSR L1b reprocessing will include 'best' drfit correction factors

Intercomparison Methodology – Direct comparisons

RAL Space

Approach works for sensors at similar local time and view geometry – e.g. MERIS and AATSR

Provides Limited number of coincidences

No good for sensors at different crossing times - e.g. EOS-A/ENVISAT

Restricted to near nadir observations

Atmospheric corrections are needed where spectral bands are not coincident

Direct comparison MERIS vs. AATSR

AATSR and MERIS share same platform hence direct comparisons are possible

Corresponding channels at 865nm, 660nm and 555nm

Matchups at VZA <10°

AATSR drift corrections applied

Extends range of possible cross-calibrations

- Sensors at different overpass times e.g. EOS-A/ENVISAT
- Sensors where no direct comparisons possible e.g. AATSR/ATSR-2

Atmospheric adjustments needed where bands are not coincident

Reference BRF (Updated Model)

- For a given view zenith angle , $\theta \pm 5^{\circ}$ we treat the BRF as polynomial function of the solar zenith angle, θ_0
- Assumes correlation between solar zenith and relative azimuth is >0.9.
- The function is obtained by fitting to data measured early in the mission where the drift is assumed to be low compared to the surface anisotropy, Smith et al 2002.
- The uncertainty in the BRF, u(R) is taken from the co-variance matrix generated by the function.
 - Dependent on the measurement errors provided to the model. For this analysis we assume the standard deviation of the average reflectance measurements over the site.
- For each band and view angle, model provides coefficients, co-variance matrix, sza-relaz correlation, rss of residuals and validity range.

RAL Space

model

MERIS vs. AATSR BRF RAL Space 865nm 1.20 Using BRF model 1.15 1.10 provides more R/R_{ref} 1.05 comparisons 1.00 0.95 0.90 2005 2004 2006 2007 2008 2009 2010 2011 Results are in 665nm 1.20 1.15 agreement with direct 1.10 R/R_{ref} comparisons 1.05 1.00 0.95 0.90 2005 2006 2004 2007 2008 2009 2010 2011 Improvements to 560nm 1.20 MERIS cloud screening 1.15 could reduce scatter R/R_{ref} 1.10

1.05 1.00 0.95 0.90

2004

2005

2006

2007

2008

2009

2010

2011

Direct comparisons with AATSR or MERIS not possible before 2002 hence comparisons with BRF model is only method available

Results show systematic bias between AATSR and ATSR-2

Small correction for ATSR-2 long-term drift is needed at 870nm

Sentinel-3 OLCI/SLSTR and MERIS/(A)ATSR workshop 17 ESA/ESRIN 15 -19 October 2012

MODIS-A vs. AATSR BRF

Direct comparisons between MODIS-A and AATSR are not possible due to orbit differences

Differences between Desert and Dome-C are apparent – due to spectral variation in site reflectance

Improvements to cloud screening, spectral corrections should reduce differences

Sentinel-3 OLCI/SLSTR and MERIS/(A)ATSR workshop ESA/ESRIN 15 -19 October 2012 19

How to account for spectral Variations

- Even after accounting for atmosphere we still need to address spectral variations of site BRF
- Use MERIS profile
 - OK as a rough approximation
 - Spectral resolution not fine enough to account for absorption lines
- Use Simulations
 - MODTRAN
 - Corrections to atmosphere only site spectral variations not specific enough
 - Need spectra for sites
- Use Spectrometer Data
 - GOME-2
 - Nadir View
 - Bands up to 800nm
 - SCIAMACHY
 - Alternate Limb/Nadir view
 - Bands up to 2200nm

Good temporal coverage Spatial resolution within Libya-4 site Spectral range up to 800nm Co-registered with METOP-AVHRR

Poor temporal coverage (for Nadir) Spatial resolution larger than site Spectral range up to 2000nm Co-Registered with AATSR/MERIS

ESA/ESRIN 15 -19 October 2012

Intercomparison summary Adjusted for estimated spectral errors

Sea and Land Surface Temperature Radiometer RAL Space

(1300 km min up to 1800 km)

Nadir swath Dual view swath

Two telescopes

Spectral bands

Spatial Resolution

Radiometric quality

Radiometric accuracy

(750 km) Φ 110 mm / 600mm focal length

TIR: 3.74µm, 10.85µm, 12µm SWIR : 1.38µm, 1.61µm, 2.25 µm VIS: 555nm, 659nm, 859nm

>74°

49°

1km at nadir for TIR, 0.5km for VIS/SWIR

NEΔT 30 mK (LWIR) - 50mK (MWIR) SNR 20 for VIS - SWIR

0.2K for IR channels 2% for Solar channels relative to sun

AATSR Performance is Maintained!

- SLSTR has significantly wider FOV 1500km compared to 500km
- Nadir pixel is offset by -5°
 - Not exact coincidence with OLCI at Nadir
 - Matching geometry at swath edges
- Inclined view in opposite direction to (A)ATSR
 - Hence in backscatter direction in northern hemisphere
 - Good for match-ups with GEO sensors

Conclusions

- Results allow us to provide a consistent and stable calibration across all ATSR sensors
- ATSR-1 and ATSR-2 will be recalibrated to AATSR in next reprocessing and include improved drift corrections
- AATSR Long term drift measurements will be included in the 3rd reprocessing.
 - Will not be adjusted to align with MERIS/MODIS calibrations
- Improvements to site BRF modelling to allow for dependency with view zenith angles and spectral differences.
- Techniques will be adapted for Sentinel-3 sensors (SLSTR and OLCI) and allow cross calibrations with ENVISAT (AATSR and MERIS) despite mission gap.