

MetOp-A and MatOp-B AVHRR visible and near-IR channel inter-comparison with BRDF consideration.

Tiejun Chang¹, Fred Wu², and Fuzhong Weng²

¹ ERT Inc., 6100 Frost Place, Suite A, Laurel, MD 20707, USA ² NOAA/NESDIS/STAR, College Park, MD 20740, USA

GSICS Meeting, March, 4, 2013

Acknowledgements Thanks Wei Guo and Felix Kogan for their contribution.

- Introduction
- MetOp-A and MetOP-B inter-comparison
- BRDF effect and modeling
- Libyan Desert reflectance seasonal oscillation
- MetOp-B seasonal oscillation curve regression
- MatOp-B visible and near-IR channel calibration update
- Summary

MetOp-B: Launched September 17, 2012

Dual MetOp Constellation

- □ Same Orbital Track
- □ Separated by ½ Orbit (180 degrees)
- □ Orbital Sensing difference ~50 mins
- □ One is Primary and the other is Secondary

AVHRR

Scan Rate	6 Hz (0.1667 secs)		
Scan Type	Continuous scan		
Pixel IFOV (3dB beamwidth)	0.0745° (square)		
IFO¥ size at Nadir	1.1 km		
Sampling at Nadir	0.87 km		
Earth View Pixels / Scan	2048		
Swath	± 55.37°		
Swath	± 1464 km		
Spectral Range	0.6 to 12 µm		

MetOp-A and MetOp-B AVHRR inter-comparison

Libyan Desert for inter-comparison and vicarious calibration

MetOp-B AVHRR images

MetOp-A and MetOp-B inter-comparison at Libyan Desert

Different instrument zenith angle and Solar zenith angle

MetOp-A and MetOp-B inter-comparison at Libyan Desert

MetOp-A and MetOp-B inter-comparison BRDF effect modeling

Modeling for comparison with zenith angle dependency

$$R_{sensor} = \alpha + p \phi_{sensor_zenith} + q \phi_{Solar_zenith}$$

$$\frac{R_B}{R_A} = \frac{\alpha_B + p\phi_{B_zenith} + q\phi_{Solar_zenith_B}}{\alpha + p\phi_{A_zenith} + q\phi_{Solar_zenith_A}}$$
$$= \left(\frac{\alpha_B}{\alpha}\right) \frac{1 + \frac{p\phi_{B_zenith}}{\alpha_B} + \frac{q\phi_{Solar_zenith_B}}{\alpha_B}}{1 + \frac{p\phi_{A_zenith}}{\alpha} + \frac{q\phi_{Solar_zenith_A}}{\alpha}}$$
$$\frac{R_B}{R_A} \approx \left(\frac{\alpha_B}{\alpha}\right) + p'(\phi_{B_zenith} - \phi_{A_zenith}) + q'(\phi_{Solar_zenith_B} - \phi_{Solar_zenith_A})$$

Approximation: 1.
$$\left(\frac{1}{1+x} \approx 1-x \quad for x < 1\right)$$

2. secondary order effect ignored

MetOp-A and MetOp-B inter-comparison with BRDF consideration

Zenith angles consideration

Solar zenith angle difference (B-A)

MetOp-A and MetOp-B inter-comparison with BRDF consideration

2

DATMOSA

MENT C

11/15/2012 results using 1 month data

MetOp-A and MetOp-B inter-comparison BRDF modeling results

13

The modeling of the seasonal oscillation requires data points in certain length of time

□ The information from previous AVHRR measurements can be used to predict the seasonal oscillation for MetOp-B AVHRR.

Assumptions and approaches: The seasonal oscillation phase and amplitude are the same as MetOp-A AVHRR.

AVHRR visible channel calibration using seasonal oscillation

(Left) The seasonal oscillation (red curve) from MetOp-A. The symbols are MetOp-A data corrected by the degradation (Right) Calibration of MetOp-B with seasonal variation consideration. The red curve is the reference reflectance with seasonal oscillation. The symbols are MetOp-B data

AVHRR visible channel calibration

□ After the update coefficients derived, The response function (count to albedo conversion) can be updated.

□ The black lines from pre-launch calibration. The red lines are the update.

The accuracy increases with number of the data point.

□ The degradation should be considered if the duration of the data is sufficient long.

The visible and near-infrared channel response before and after the calibration update. The black lines are from pre-launch calibration and the red lines are on-orbit updated response. 16

Verification of the calibration update using weekly NDVI comparison of MetOp-A and MetOp-B.

Weekly NDVI from MetOp-A/B

0.8

1.0

0.10

0.6

0.067

0.8

1.0

MetOp-A AVHRR Libyan desert seasonal oscillation using curve regression

On 02/26/2013, more than 4 month data are used for the calibration update. The seasonal oscillation curve should be considered. An improvement is applied using the regression of the oscillation curve.

CO

Μ

Μ

Summary

Calibration update calculated 11/15/2012

Calibration update calculated 02/26/2013 (Seasonal oscillation curve regression applied)

Update efficient	Ch 1	Ch 2	Ch3A	Update coefficient	Ch 1	Ch 2	Ch3A
lethod 1	0.951	1.085	1.205	Method 1	0.9634	1.0929	1.2400
lethod 2	0.961	1.087	1.220	Method 2	0.9647	1.0939	1.2333
werage	0.956	1.086	1.212	Average	0.964	1.0934	1.2366

Method 1: seasonal oscillation Method 2: BRDF modeling

Degradation is observed from these two delivery. The degradation in the update is the averaged value over the period of the comparison data used.

□ With curve regression of the seasonal oscillation, the results of these two methods are closer.

19

□ MetOp-A and MetOp-B inter-comparison is performed. The BRDF effect has been modeled and has been considered in the comparison.

□ The seasonal oscillation derived from MetOp-A is applied to MetOp-B for calibration update. Applied the curve regression for seasonal oscillation modeling.

□ MetOp-B AVHRR visible and near-IR channel calibration update is derivered using these two methods and the calibration update has been verified using NDVI

□ The first update was delivered January 2013, and the update now becomes monthly routine task.

The degradation will be considered in the modeling as longer period of data used. A model will be developed for operational calibration update and for research.