Transfer Calibration from ERBS WFOV Nonscanner to NOAA-9 WFOV Nonscanner and to NOAA-9 Scanner

Alok K. Shrestha, Seiji Kato, Takmeng Wong, Walter F. Miller, Kristopher M. Bedka, David A. Rutan, Fred G. Rose, Patrick Minnis, G. Louis Smith, and Jose R. Fernandez

4th March, 2013

2013 GSICS Annual Meeting

March 4-8, 2013, Williamsburg, VA, USA

We thank Drs. Bruce Wielicki, Norman G. Loeb, and David Johnson for useful discussions. This work was supported by the NOAA Climate Data Record Program.

Objectives

- To generate CERES-Like ERBE climate record that is consistent with present-day CERES data.
- To achieve this:
 - Reprocess ERBE data using
 - CERES algorithms and ADMs instead of ERBE algorithms and ADMs.
 - Transfer Calibration from CERES to ERBS WFOV nonscanner and to NOAA-9 and NOAA-10 instruments.
 - We present calibration of
 - ERBS WFOV nonscanner to NOAA-9 WFOV nonscanner
 - NOAA-9 WFOV nonscanner to NOAA-9 scanner

Introduction

- ERBS (Earth Radiation Budget Satellite), NOAA-9, and NOAA-10 are part of Earth Radiation Budget Experiment (ERBE), and conducted during the second half of 1980's.
- These satellites were launched on
 - NOAA-9 => Dec 1984 into Sun-synchronous Orbit
 - ERBS => Oct 1984 into Precessing Orbit
 - NOAA-10 => Sep 1986 into Sun-synchronous Orbit

Nonscanner

Fig 1: Instruments on NOAA-9 and ERBS

NOAA-9 and ERBS Datasets

- In this study,
 - To Compare NOAA-9 and ERBS WFOV nonscanner, we use two years (1985, and 1986) data
 - To Compare NOAA-9 scanner and WFOV nonscanner, we use 4 months (Apr, July, Oct, and Dec 1986) of reprocessed NOAA-9 scanner data
 - NOAA-9 scanner data is reprocessed using CERES algorithms and CERES-ADMs instead of ERBE algorithm and ERBE ADMs
 - Cloud properties needed to use CERES algorithms and CERES ADMs is derived from NOAA-9 AVHRR observations.

Methodologies

- Two major Steps:
 - Co-location of Footprints in Time and Space
 - The nonscanner observes entire FOV at one instant of time, while scanner takes ~16 min to view the same area.
 - Estimate Irradiance
 - WFOV and WFOV nonscanner Comparison
 - Compute average irradiance of all WFOV footprints colocated in other WFOV footprint
 - Scanner and WFOV nonscanner Comparison
 - Compute integrated scanner radiance using all scanner footprints colocated in WFOV nonscanner footprint

WFOV and WFOV Comparison Process

Monthly Irradiance of NOAA-9 & ERBS WFOV

Scanner and WFOV Nonscanner Footprint Colocation

Estimation of scanner Irradiance

By Integrating Scanner Radiance

$$L_{s}(\alpha,\beta) = f(\alpha,\beta \mid \alpha_{s},\beta_{s})L_{s}(\alpha_{s},\beta_{s})....(1)$$

 $L_s(\alpha, \beta)$ is the scanner radiance derived by turning $L_s(\alpha_s, \beta_s)$ from scanner position to nonscanner position.

Here, $f(\alpha,\beta \mid \alpha_s,\beta_s)$ is the turning function

$$f(\alpha, \beta \mid \alpha_s, \beta_s) = \frac{R_s(\alpha, \beta)}{R_s(\alpha_s, \beta_s)}$$
 R : Anisotropic Factor

 Scanner radiance is integrated using Eq. 2

 $\hat{L}_{s,ij}$ is the average of all $L_s(\alpha,\beta)$ in the ijth angular bin and $\Delta\Omega_{ij}$ is solid angle of this bin.

Discretizing measurement into nadir and azimuth angle (α , β) angular bins to get the flux (NOT IN SCALE)

Instantaneous Irradiance of Nonscanner & Scanner

2-D Histogram of Number of Matched Footprints

Sensitivity Study to Irradiance Comparisons (Scanner and WFOV)

- How sensitive is the calibration to Turning Function?
- Turning function depends on
 - Anisotropic Factor
 - Scene Identification
 - Cloud Fraction
 - Cloud Optical Depth

Irradiance Comparison Sensitivity to Anisotropic Fraction and Scene Identification (Scanner and WFOV)

Table: Sensitivity of longwave and shortwave irradiance differences' toanisotropic factor, cloud fraction and optical depth changes

	Irradiance Difference When anisotropic factor perturbed by 5%	Irradiance Difference when cloud fraction perturbed by 5% Increase (Decrease)	Irradiance Difference when cloud optical depth perturbed by ~10% Increase (Decrease)
Night Longwave	1.8%	0.1(0.01)%	0.01(0.1)%
Day Longwave	1.8%	0.2(0.01)%	0.01(0.01)%
Shortwave	5.8%	0.5(0.1)%	0.2(0.3)%

• Uncertainty during comparison of NOAA-9 scanner and nonscanner observations is dominated by anisotropic factor.

Total Uncertainty in Scanner, WFOV Nonscanner, and its Comparison Process

Relative Difference of Average Irradiance	Instrument Uncertainty	NOAA-9 WFOV & ERBS-WFOV Comparison	Anisotropic Uncertainty	Total Uncertainty
Night Longwave	1%	-0.6%	0.3% ⁽¹⁾	1.2%
Day Longwave	1%	0.4%	0.3% ⁽²⁾	1.1%
Shortwave	2%	0.3%	1.5% ⁽³⁾	2.5%

- CERES-ADM has uncertainty of
 - 5% in Shortwave channel
 - 3% in Longwave channel
- (1) 1.8%/3/2 [3 is for longwave uncertainty, and 2 is for the ± direction]
- (2) 1.8%/3/2 [3 is for longwave uncertainty, and 2 is for the ± direction]
- (3) 5.8%/2/2 [2 is for shortwave uncertainty, and other 2 is for the ± direction]

Summary and Conclusions

- Comparison of 2 years of ERBS and NOAA-9 WFOV nonscanner suggests NOAA-9 WFOV irradiance is:
 - Lower by 0.6% for night longwave channel
 - Higher by 0.4% for day longwave channel
 - Higher by 0.3% for shortwave channel
- Comparison of 4 months of NOAA-9 scanner and WFOV nonscanner suggests NOAA-9 scanner integrated radiance is:
 - Lower by 0.7 % for both night and day longwave channel
 - Higher by 0.9% for shortwave channel
- Total uncertainties (Uncertainty in scanner, nonscanner, and calibration process) are
 - 1.2% for night longwave channel
 - 1.1% for day longwave channel
 - 2.5% for shortwave channel

Summary and Conclusions

 Scanner and nonscanner comparison is relatively sensitive to anisotropic factor than to scene identification (cloud fraction, cloud optical depth).

Future Work

- Use full (Two Years) of NOAA-9 scanner data to compare with NOAA-9 WFOV nonscanner observations.
- Reprocess NOAA-10 data and perform similar analysis.

Thanks

Backup Slides

Scanner and WFOV Nonscanner Comparison Process

Scanner and WFOV Nonscanner Comparison Process

Methodologies : Colocation of Footprints Scanner and WFOV nonscanner

Methodologies : Colocation of Footprints WFOV and WFOV nonscanner

Y : Earth Central Angle

Monthly Irradiance of NOAA-9 Vs ERBS WFOV

 Table:
 NOAA-9 and ERBS Monthly Irradiance Averaged Over Two Years

	Average Irradiance		(NOAA-9) - ERBS		(NOAA-9 - ERBS)/ ERBS	
	ERBS WFOV (W/m ²)	NOAA-9 WFOV (W/m ²)	Difference (W/m ²)	RMS (W/m²)	Relative Difference	Relative RMS
Nighttime LW	215.3	214.0	-1.4	1.6	-0.6%	0.7%
Daytime LW	220.0	220.8	1.0	2.0	0.4%	0.9%
SW	158.0	158.3	0.4	4.7	0.3%	3.0%

Sensitivity Study

 Table 1: Anisotropic Sensitivity Study

Average Flux	W/O Change REL-DIFF	5% Change	DIFF
LWDT	-0.7	-2.5%	1.8%
SWDT	0.9	6.7%	5.8%
LWNT	-0.7	-2.5%	1.8%

Table 2: Cloud Fraction Sensitivity Study

Average Flux	W/O Change REL-DIFF	5% Increase (Decrease)	DIFF
LWDT	-0.7	-0.9(-0.7)%	0.2(0.01)%
SWDT	0.9	1.4(1.0)%	0.5(0.1)%
LWNT	-0.7	-0.8(-0.7)%	0.1(0.01)%

Table 3: Cloud Optical Depth Sensitivity Study

Average Flux	W/O Change REL-DIFF	~10% Increase (Decrease)	DIFF
LWDT	-0.7	-0.7(-0.7)%	0.01(0.01)%
SWDT	0.9	0.7(1.2)%	0.2(0.3)%
LWNT	-0.7	-0.7(-0.8)%	0.01(0.1)%

• Uncertainty during comparison of NOAA-9 scanner and nonscanner observations is dominated by anisotropic factor.