

Towards a free tropospheric humidity product with global longitudinal coverage: FTH geo-ring demonstrator

Marc Schröder, Remy Roca, Carsten Standfuss

 Inter-calibration of imager observations from time-series of geostationary satellites (IOGEO)
IOGEO aims at the generation of a Fundamental Climate Data Record (FCDR) of calibrated and quality-controlled geostationary sensor data and is lead by EUMETSAT.

CM SAF's contribution to IOGEO is:

Development of FTH geo-ring demonstrator

Background

6

TS=302K (red)

TS=307K (green) TS=312K (blue)

BT for 3 TS

10

Wavelength (microns)

FTH=15% BLH=75%

260

240

220

200

- FTH strongly linked to Earth's radiation budget and atmospheric dynamics.
- Changes at the dry side of the FTH PDF have much larger impact on OLR than changes at the wet side.
- Climate models predict poleward and upward movement of dry regions and slight increase in frequency of occurrence of dry air.

Weighting function impact

- ERA40 profiles input to RTTOV.
- Figures show peak heights.

Relative humidity Jacobian

Weighting function from Soden and Bretherton (1996)

Smaller peak heights!

Roca et al. 2009 Schröder et al., 2014, submited

Geo-ring

Input, flow chart

 MTSAT-1, GOES-11. GOES-12, MET7 radiances from ISCCP-DX.

- MET9 radiances from DWD archive, sampled to mimic ISCCP-DX.
- Cloud mask and cloud top pressure from ISCCP-DX.
- Inter-calibration to IASI from GSICS.
- p₀ computed using ERA-Interim.

BT / radiance GSICS

Achieve spatial homogeneity through spectral calibration to a single common reference channel

- CRCWV0: 1359.25 cm⁻¹ 1639.00 cm⁻¹ • (Hewison and Kessel, 2010);
- CRCWV1: 1400 cm⁻¹ 1600 cm⁻¹;
- CRCWV2: 1450 cm⁻¹ 1550 cm⁻¹; •
- CRCWV3: 1450 cm⁻¹ 1650 cm⁻¹; •
- CRCWV4: 1500 cm⁻¹ 1600 cm⁻¹; •
- CRCWV5: 1400 cm⁻¹ 1700 cm⁻¹;
- MET9

CRC GEO	WV0	WV1	WV2	WV3	WV4	WV5	MSG-9
MET-7	0.32	0.39	0.58	0.31	0.56	0.18	0.53
MSG-9	0.84	0.91	0.11	0.23	0.12	0.70	0
GOES-11	0.25	0.32	0.65	0.38	0.63	0.12	0.60
GOES-12	0.27	0.21	1.10	0.85	1.05	0.39	1.04
MTSAT- 1	0.29	0.37	0.61	0.35	0.60	0.16	0.56

 $\ln\left(\frac{FTH \cdot p_0}{\cos \theta}\right) = a_{CRC} + b_{CRC} \cdot BT_{CRC}$ $FTH = \frac{\int \frac{\partial BT_{CRC}}{\partial RH}(p) \cdot RH(p) \, dp}{\int \frac{\partial BT_{CRC}}{\partial T}(p) \, dp} \qquad p_0 = \frac{p(T = 240K)}{300hPa}$

with

Inversion:

CRC5 definition requires recomputation of inversion coefficients (done also at CM SAF).

Required installation and test of line-by-line model, here 4AOP (Scott and Chedin, 1981).

 When using ISCCP-DX data GOES-11 and GOES-12 seem to have a bias of 15-20 K.

FTH geo-ring Exemplary instantaneous results

TIME : 26-JUL-2009 18:00 (averaged)

Frequency of occurrence of dry FTH, here: FTH<10%</p>

- Comparison against ARSA radiosondes implemented evaluation work in progress.
- Comparison against HIRS UTH exhibits bias.
- Assessment of uncertainty relative to user requirements work in progress.
- Spatial homogeneity eases applications (process and climate analysis)
- CRC approach eases application in model evaluation and assimilation.
- Updates:
 - Use original GOES data and sample ISCCP-DX.
 - Change to IOGEO FCDR, redo FTH geo-ring demonstrator and evaluate difference to precursor version.

Thanks for your attention!

