

JAXA Agency Report

Keiji Imaoka Earth Observation Research Center (EORC)

Japan Aerospace Exploration Agency (JAXA)

GSICS/GRWG Meeting Darmstadt, Germany March 25, 2014

地表付近の降水の強さ / Surface Precipitation Rate

Radar Reflectivity Factor

High

GCOM 1st Generation Satellites

• 2 types of medium-sized satellites and 3 generations: 10-15 years observation

GCOM-W1 (Water)

GCOM-C1 (Climate)

Instrument	Advanced Microwave Scanning Radiometer-2	Instrument	Second-generation Global Imager	
Orbit	Sun Synchronous orbit Altitude: 699.6km (on Equator) Inclination: 98.2 degrees Local sun time: 13:30+/-15 min	Orbit	Sun Synchronous orbit Altitude: 798km (on Equator) Inclination: 98.6 deg. Local sun time: 10:30+/- 15min	
Size	5.1m (X) * 17.5m (Y) * 3.4m (Z) (on-orbit)	Size	4.6m (X) * 16.3m (Y) * 2.8m (Z) (on orbit)	
Mass	1991kg	Mass	2093kg	
Power gen.	More than 3880W (EOL)	Power gen.	More than 4000W (EOL)	
Launch	May 18, 2012	Launch	JFY 2016	
Design Life	5-years	Design Life	5-years	

AMSR2 Instrument

- ✓ Successor of AMSR-E on Aqua and AMSR on ADEOS-II.
- ✓ Deployable main reflector system with 2.0m diameter (1.6m for AMSR-E).
- ✓ Frequency channel set is identical to that of AMSR-E except 7.3GHz channel for RFI mitigation.
- ✓ Two-point external calibration with improved HTS (hot-load).
- ✓ Add a redundant momentum wheel to increase reliability.

GCOM-W	AMSR2 Channel Set					
Scan and rate	Conical scan at 40 rpm	Center Freq. [GHz]	Band width [MHz]	Pol.	Beam width [deg] (Ground res. [km])	Sampling interval [km]
Antenna	Offset parabola with 2.0m dia.	6.925/	350	V and H	1.8 (35 x 62)	10
Swath width	1450km (effective > 1600km)	7.3				
Incidence angle	Nominal 55 degrees	10.65	100		1.2 (24 x 42)	
Digitization	12bits	18.7	200		0.65 (14 x 22)	
Dynamic range	2.7-340K	23.8	400		0.75 (15 x 26)	
Polarization	Vertical and horizontal	36.5	1000		0.35 (7 x 12)	
		89.0	3000		0.15 (3 x 5)	5

6

Status of AMSR2 Intercalibration

- Some updates in terms of used data period and AMSR-E slow rotation mode data.
- Status
 - Brightness temperatures (Tbs) of AMSR2 (Version 1.1) were intercalibrated with those of TMI and AMSR-E.
 - Differences were found between the calibration of AMSR2 and TMI/AMSR-E. The differences seem to be Tb-dependent.
 - Intercalibration coefficients (slope and intercept) were derived to compensate the calibration differences.
 - Investigation of the causes of the calibration differences are underway.
- Plans
 - Comparison with polar orbiting radiometers through TMI, or by polar region match-ups.
 - Intercomparison with GMI onboard GPM core observatory.

Direct comparison with AMSR-E

- Direct intercalibration between AMSR2 and AMSR-E:
 - Without significant corrections for center frequency, incidence angle, and observing local time.
 - Enables intercalibration in wide range of Tbs over land, ice, and ocean.
- AMSR-E slow rotation mode data (L1S) are available at:
 - http://sharaku.eorc.jaxa.jp/AMSR/products/amsre_slowdata.html

Intercalibration with AMSR-E (2rpm)

AMSR2 Ascending Passes

Intercalibration with TMI

AMSR2 Ascending Passes

Consistency among methods

- Consistency among different intercalibration approaches
 - AMSR-E slow rotation mode (2rpm, L1S)
 - AMSR-E operational observation (past period, L1B)
 - Difference between DDs: DD(AMSR2-TMI) DD(AMSRE-TMI)

GCOM-C1/SGLI

Improvement of the land, coastal, and aerosol observations
✓ 250m spatial resolution with 1150~1400km swath
✓ Polarization/along-track slant view

window

All: Electric calibration

Multi-angle obs. for 574nm and 869nm

GCOM-C SGLI characteristics (Current baseline)							
Orbit	Sun-synchronous (descending local time: 10:30), Altitude: 798km, Inclination: 98.6deg						
Launch Date	JFY 2016 (TBD)						
Mission Life	5 years (3 satellites; total 13 years)						
Scan	Push-broom electric scan (VNR: VN & P) Wisk-broom mechanical scan (IRS: SW & T)						
Scan width	1150km cross track (VNR: VN & P) 1400km cross track (IRS: SW & T)						
Digitalization	12bit						
Polarization	3 polarization angles for POL						
Along track tilt	Nadir for VN, SW and TIR, & +/-45 deg for P						
	VN: Solar diffuser, Internal lamp (LED, halogen), Lunar by pitch maneuvers (~once/month), and dark current by masked pixels and nighttime obs.						
On-board	SW: Solar diffuser, Internal lamp, Lunar, and dark						
calibration	Current by deep space window The Plock body and dark current by deep space						

```
SGLI: Second
generation GLobal
Imager
```


shortwave & thermal InfraRed (T) Scanner (IRS)

> Polarization (along-track ' slant) radiometer (P)

Visible & Near infrared pushbroom Radiometer (VNR)

> 250m over the Land or coastal area, and 14cm over offshore

	Characteristics of SGLI spectral bands							
		λ	Δλ	L	L	SNR@L _{std}	IFOV	Tilt
	CH	CH nm		$W/m^2/sr/\mu m$		-		deg
				K: Kelvin		Κ: ΝΕΔΤ		
	VN1	380	10	60	210	250	250 /1000	0
	VN2	412	10	75	250	400	250 /1000	0
	VN3	443	10	64	400	300	250 /1000	0
	VN4	490	10	53	120	400	250 /1000	0
	VN5	530	20	41	350	250	250 /1000	0
	VN6	565	20	33	90	400	250 /1000	0
	VN7	673.5	20	23	62	400	250 /1000	0
≯	VN8	673.5	20	25	210	250	250 /1000	0
	VN9	763	12	40	350	1200*	250 / 1000*	0
	VN10	868.5	20	8	30	400	250 /1000	0
≯	VN11	868.5	20	30	300	200	250 /1000	0
	POL1	673.5	20	25	250	250	1000	±45
ł	POL2	868.5	20	30	300	250	1000	±45
	SW1	1050	20	57	248	500	1000	0
	SW2	1380	20	8	103	150	1000	0
	SW3	1630	200	3	50	57	250 /1000	0
	SW4	2210	50	1.9	20	211	1000	0
	TIR1	10800	0.7	300K	340K	0.2K	250 / 500 /1000	0
	TIR2	12000	0.7	300K	340K	0.2K	250 / 500 / 1000	0
	250 m m h to vikility T							

250m-mode possibility

Status of GCOM-C1/SGLI

- Critical Design Review (CDR) of SGLI and GCOM-C1 was held in 2013: PFM manufacturing was approved.
- Manufacturing of SGLI key flight parts, such as optics, filters, detectors or coolers, was almost finished and under the final inspection for the components assembly and tests.
- SRU sensor system integration is planned in the middle of 2014. Sensor-level pre-flight tests including both optical performance tests and environment tests will be done.
- Satellite level test will start in 2015 and planned for launch in JFY2016.

Engineering model of SGLI-IRS for vibration test configuration

Engineering model of SGLI-VNR for thermal vaccumm test configuration

Calibration strategy integrating the calibration methods

Sensor component	VNR (push-bloom)	SWIR (scanning)	TIR (scanning)
Calibration target			
Pre-launch	Gain (radiometric sensor mode	Gain, blackbody, RSR,	
characterization	polarization, MTF (PSF),	linearity	
Functional check	Electric calibration, sensor tele		
Offect	Optical black (every line),	Deep-space or	Deep-space and pitch
Oliset	and nighttime observations	nighttime observations	maneuver observations
I wooh shift	LED to check change of	halogen lamp (+LED) to	
	diffuser check diffuser change		Black body calibration
Short term gain change	solar light → diffuser (~once/week)	solar light → light guide → diffuser (eve ry path)	Diack body cambration
Long term change	Monthly Moon (7°) observation of the diffuser degr	Primary source	
	Vicarious calibration over the	Vicarious calibration at	
Vicarious adjustment	CEOS instrumented sites and	the CEOS instrumented	Vicarious/cross
	ocean cruises	sites (land)	calibration by SST
Cross check and image	Vicarious & cross calibration c		
cuolity	sites (Libya, Dome-C, TuzGolu		
quanty	pol sensitivity by simultaneous		

ioint team of the JAXA GCOM-C hardware development and data-analysis & application groups

GOSAT mission schedule

- Nov. 2010 Level 3 (SWIR CO_2 and CH_4 column averaged dry air mole fraction global distribution in monthly mean) to public
- Mar. 2012 Level 2 (TIR CO_2 and CH_4 density profile global distribution) to public
- Dec. 2012 Level 4A (CO_2 flux estimation) and Level 4B (Simulated CO_2 distribution) to public.

Status of GOSAT calibration

(1) TIR radiometric calibration (The latest L1B v161)

- Blackbody (BB) and Deep Space (DS) views for onboard calibration (2-time in dayside, 4-time in nightside)
- Polarization correction (mirrors, beamsplitter, dichroic filters)
- BB emissivity (EM evaluated by heated halo method at UW-Madison)
- Sensor background temperature estimation
- Vicarious calibration field campaign (with UW-Madison), Intercomparison with AIRS
- (2) SWIR radiometric calibration (Radiometirc degradation factor)
- Onboard solar diffuser monitoring per month
- Vicarious calibration field campaign (with NASA/OCO-2, Ames), Lunar calibration, Sahara desert monitoring

(3) Geometric correction (Estimated geolocation data)

- Pointing anomaly evaluated by onboard IFOV camera
- Estimated geolocation after correction

GOSAT TIR vicarious calibration at Railroad Valley

radiosonde

TANSO-FTS/S-HIS BT difference with STD [K]

	Left	Center	Right
	Path	Path	Path
CO ₂ channel	0.48	0.55	0.60
(650–750 cm ⁻¹)	(+/-0.66)	(+/-0.41)	(+/-0.75)
Window channel	0.47	0.64	0.18
(800–900 cm ⁻¹)	(+/-0.08)	(+/-0.08)	(+/-0.08)
O ₃ channel	-0.54	0.14	-0.92
(980–1080 cm ⁻¹)	(+/-0.53)	(+/-0.22)	(+/-0.47)

Kataoka et al., 2013

- The GOSAT TIR spectra are compared with Aqua/AIRS at Simultaneous Nadir Observations (SNOs).
 - This work is collaborated with SSEC, Univ. Wisconsin-Madison.
- The coincidences are located at mid-latitudes for AIRS. The spectral difference is evaluated in 0.5 K.

GOSAT summary

- GOSAT is normally operated over 5 years and acquires fine absorption spectra in SWIR to TIR regions with cloud/aerosol imager.
- Radiometric calibration on orbit in 5 years
 - TIR inter-comparison by Simultaneous Nadir Observations (SNOs) with AIRS
 - SWIR vicarious calibration field campaign with in-situ measurements and aircraft over-flight collaborated with NASA OCO-2 and Ames
 - Continuous operations of lunar calibration and solar diffuser
- Ongoing work
 - Long-term inter-comparison the latest v161 with AIRS
 - Simultaneous Off-Nadir Observations (SONOs) for scan angle dependency evaluation 19