

A New Reference Instrument for Reflective Solar Inter-Calibration: from MODIS to VIIRS

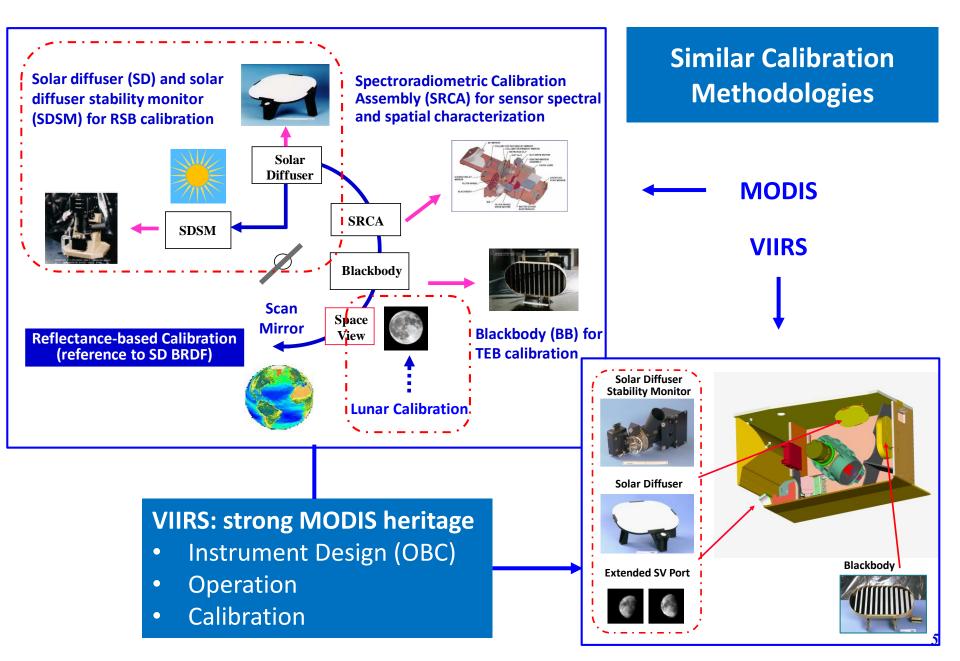
X. Xiong¹, A. Angal¹, J. Butler¹, C. Cao², D. Doelling³, A. Wu¹, and X. Wu² (1) NASA/GSFC; (2) NOAA NESDIS; (3) NASA/LaRC

Acknowledgements: S. Wagner, and many other GSICS members

GSICS Lunar Calibration Workshop, Xi-An, China, November 13-16, 2017

- Motivations (why?)
 - From MODIS to VIIRS
- Calibration Approaches for MODIS and VIIRS (make sense?)
- Inter-Calibration and Reference Transfer Approaches (how?)
 - For most spectral bands, VIIRS is more suitable as a reference sensor for inter-calibration
- Future Considerations (what else?)

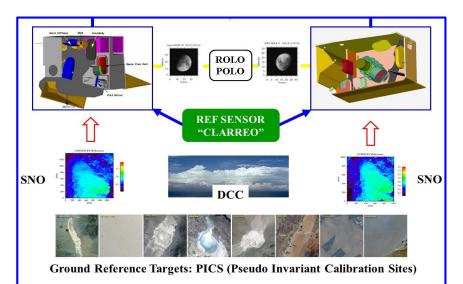
X. Xiong, A. Angal, J. Butler, C. Cao, D. R. Doelling, A. Wu, and X. Wu, "Global Space-based Inter-Calibration System Reflective Solar Calibration Reference: From Aqua MODIS to S-NPP VIIRS", Proc. of SPIE, 2016. 2


Motivations

- <u>Aqua MODIS</u> has been (was) used as the reflective solar (RS) calibration reference for many years by many users, including GSICS community
 - "Best" characterized and validated earth-observing sensor <u>at the time</u>
 - ✓ Extensive pre-launch calibration/characterization with lessons from Terra MODIS
 - ✓ Traceable to NIST reflectance standard
 - ✓ Stringent calibration requirements (±2% in reflectance)
 - $\checkmark~$ A set of on-board calibrators, including SD, SDSM, and SRCA
 - \checkmark Scheduled lunar observations through the entire mission
 - \checkmark Better performance than Terra MODIS in the RS spectral region
 - Successfully operated <u>since 2002</u> with mission likely to be extended beyond 2023 (NASA HQ Senior Review, 2017)
 - Dedicated efforts for instrument operation and calibration (MCST)
 - Consistently produced long-term data records enabling a broad range of applications
- Many new missions/sensors have been launched and operated by different countries/agencies in recently years, including VIIRS, OLI, AHI, ABI, and sensors on Sentinels => need for a new reference instrument

Motivations

- <u>VIIRS</u> can and should be used as a new RS calibration reference
 - Designed with strong MODIS heritage by the same instrument vendor
 - Operated and calibrated based on lessons and strategies from MODIS
 - Applied similar solar and lunar calibration approaches and methodologies
 - S-NPP VIIRS, <u>launched in 2011</u>, provides critical linkage between data records derived from EOS Terra/Aqua MODIS and future JPSS VIIRS sensors
 - JPSS-1 launch: Nov 15, 2017
 - J2/J3/J4 launch: 2021/2026/2031
 - Dedicated calibration effort by NOAA and NASA, including data reprocessing
 - NASA VIIRS SDR and L1B reprocessing; NOAA VIIRS SDR reprocessing
- Issues to be addressed
 - For previous sensors already used Aqua MODIS as inter-calibration reference
 - For future sensors likely to use J1 or even J2/J3/J4 VIIRS for inter-calibration
 - Which VIIRS and what VIIRS data (from NOAA IDPS, NASA SIPS, ...)?
 - What about the Moon?


Calibration Approaches for MODIS and VIIRS

Inter-Calibration and Reference Transfer Approaches

- Two most popular (if not the best) approaches to transfer calibration reference:
- DCC Method
 - MODIS: works for B1, B3-7, B18, and B26 (not for B2, B8-16, B17, and B19 due to saturation)
 - VIIRS: works for all bands except for M6 (roll over saturation)
- Lunar Calibration
 - MODIS: works for B1-B4, B8-B12, and B17-19* (*no matching VIIRS bands); relative approach for B13-16 due to saturation; xtalk correction needed for SWIR bands
 - VIIRS: works for all bands

VIIRS is more suitable as the new GSICS reference sensor

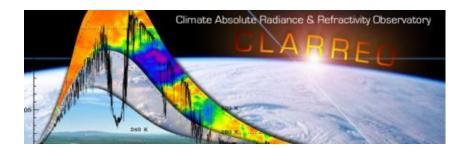
VIIRS Band	Spectral Range (um)	Nadir HSR (m)	MODIS Band(s)	Range	HSR
DNB	0.500 - 0.900				
M1	0.402 - 0.422	750	8	0.405 - 0.420	1000
M2	0.436 - 0.454	750	9	0.438 - 0.448	1000
M3	0.478 - 0.498	750	3 10	0.459 - 0.479 0.483 - 0.493	500 1000
M4	0.545 - 0.565	750	4 or 12	0.545 - 0.565 0.546 - 0.556	500 1000
11	0.600 - 0.680	375	1	0.620 - 0.670	250
M5	0.662 - 0.682	750	13 or 14	0.662 - 0.672 0.673 - 0.683	1000 1000
M6	0.739 - 0.754	750	15	0.743 - 0.753	100
12	0.846 - 0.885	375	2	0.841 - 0.876	250
M7	0.846 - 0.885	750	16 or 2	0.862 - 0.877 0.841 - 0.876	100 250
M8	1.230 - 1.250	750	5	SAME	500
M9	1.371 - 1.386	750	26	1.360 - 1.390	100
13	1.580 - 1.640	375	6	1.628 - 1.652	500
M10	1.580 - 1.640	750	6	1.628 - 1.652	500
M11	2.225 - 2.275	750	7	2.105 - 2.155	500

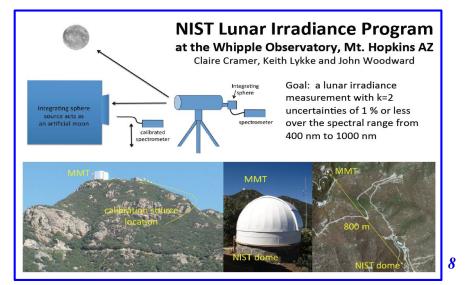
Future Considerations

What should be done?

- For previous sensors already used Aqua MODIS as reference: calibration consistency between Aqua MODIS and S-NPP VIIRS
- For future sensors likely to use J1 or J2/J3/J4 VIIRS as reference: calibration consistency between S-NPP and future JPSS VIIRS
- For current sensors: directly use S-NPP VIIRS
- Ideally, a set of inter-calibration coefficients from Aqua MODIS to S-NPP
 VIIRS and from S-NPP VIIRS to future JPSS VIIRS can be made available to all users (independently validated and reviewed)

Alternative approaches


- Transfer reference sensor (either MODIS or VIIRS) calibration to DCC and Moon (pros and cons)
- Future CLARREO or TRUTH type of instruments with significantly improved calibration traceability and accuracy, thus much reduced inter-calibration uncertainty


Coordinated efforts

What About the Moon?

Presentations in this workshop

- Lunar observations made and used by more and more sensors
- Easy access to the lunar models
 - ROLO
 - GIRO
 - SELENE/SP
 - POLO: Pleiades Orbital Lunar Observations (CNES)
- Potential improvements of lunar model (irradiance) absolute accuracy
 - NASA effort (e.g. CLARREO)
 - NIST effort
 - USGS effort
 - Other efforts

Questions?