

FIDUCEO has received funding from the European Union's Horizon 2020 Programme for Research and Innovation, under Grant Agreement no. 638822

Evolving the GSICS Approach to Inter-Satellite Calibration

<u>Tim Trent</u> Ross Bannister, Tom Block, Chris Merchant, David Moore, John Remedios

Outline

- Brief introduction to FIDUCEO and the aims of WP6.
- Describe the evolution of inter-satellite calibration in relation to GSICS approach and current progress.
- Outline future work.

FIDUCEO

- Fidelity and Uncertainty in Climate data records from Earth Observation.
- Ambition: develop a widely applicable metrology framework for Earth observation (EO).
- Motivation: establish defensible, uncertainty-quantified climate data records (CDRs) for climate and environmental change from the satellite record.
- Limitation of the status quo: if uncertainty in fundamental climate data records (FCDR) is not characterised it cannot be propagated to the CDR level.

Further information cn be found at <u>http://www.fiduceo.eu/blogs</u>

Aims of WP6

- Evaluation of FIDUCEO FCDRs during (A)ATSR-SLSTR gap.
- Goal is to build a generic framework that can handle different intercomparison types: (i) satellite-to-satellite and (ii) satellite-to-in situ

Aims of WP6

- Evaluation of FIDUCEO FCDRs during (A)ATSR-SLSTR gap.
- Goal is to build a generic framework that can handle different intercomparison types: (i) satellite-to-satellite and (ii) satellite-to-in situ

duceo

Aims of WP6

- Evaluation of FIDUCEO FCDRs during (A)ATSR-SLSTR gap.
- Goal is to build a generic framework that can handle different intercomparison types: (i) satellite-to-satellite and (ii) satellite-to-in situ

Simultaneous Nadir Overpasses

- Collocation in space and time between to satellite instruments using a tight set of criteria
- Due to time criteria most SNOs occur at the poles.
- SNOs collect in clusters (x,y,t)
 - basis for processing multiple years/platforms
 - can use same definition for radiosonde comparisons.
- The idea is to use a reference standard satellite observation (e.g. IASI) to calibrate a target instrument (e.g. HIRS).

HIRS-N18 IASI-MA SNOS between 2011-04-15 to 2011-04-21

GSICS Inter-Calibration Method L_{target} \mathcal{C}_{target} b_r b_{g} a, a_g a_r $C_{reference}$ *L_{reference}* Lhias -hias

Adaptation of figure 17 from ATBD showing the relationship between radiances observed by the target instrument (L_{target}) and those observed by reference instrument (L_{reference}). The left hand plot shows how the difference between the operation target radiance and corrected radiance (L_{bias}) is related to the newly calculated calibration coefficients (a_g, b_g) that are applied to the target instrument digital counts (C_{target}).

GSICS Inter-Calibration Method

• The GSICS inter-calibration process (Hewison et al, 2013a) uses thousands of SNO pairs from a 14 day window in order to allow comparison of the target and reference instruments via ordinary linear regression (OLS):

 $- L_{target} = a_r + b_r L_{reference}$

• Where a_r and b_r are the correction coefficients and L_{target} is the target instrument radiance. The target radiance is then converted to a consistent reference radiance (\hat{L}_{target}) by inverting the linear relationship in equation 1

$$- \hat{L}_{target} = \left(\frac{1}{b_r}\right) L_{target} - \left(\frac{a_r}{b_r}\right)$$

GSICS Inter-Calibration Method

• The operational radiance of the target instrument is calculated from the digital counts (C_{target}):

 $- L_{target} = a_c + b_c C_{target}$

 Where a_c and b_c are the operational offset and slope calibration coefficients respectively (EUMETSAT, 2016). The corrected GSICS radiance can then be calculated directly from the raw counts through the substitution of equation 3 into 2:

$$- \hat{L}_{target} = \left(\frac{a_c - a_r}{b_r}\right) + \left(\frac{b_c}{b_r}\right) C_{target}$$

• The terms $\left(\frac{a_c - a_r}{b_r}\right)$ and $\left(\frac{b_c}{b_r}\right)$ are also referred to as a_g and b_g respectively.

- Current approach assumes no uncertainty in either measurement or account of the uncertainty in the collocation.
- Need a system that can account for heterogeneity and measurement uncertainties and their correlations.
- 1st we need to repose the problem so we consider uncertainties in both observations.
 - "What is the distance between a measurement pair $(L_{i(k)}^r, L_{i(k)}^t)$ and the straight line $L_{(k)}^t = a_{(k)}^r + b_{(k)}^r L_{(k)}^r$ where the distance is specified in multiples of the error standard deviations of each measurement?"

- As FCDR products provide detailed covariance's which account for correlations between channels
 - we need to solve for all channels (k) at once (observational packet = 1 spectra).
- For each MMS file there will be m observational packets (i = obs. packet index).

Therefore we can define the following objects:
(i) l^r- observation packet for the reference instrument.

(ii) l^t - observation packet for the target instrument

(iii) a - a k element vector of $a_{(k)}^r$ values.

(iv) B - a k x k matrix whose diagonal values are a vector (b) made up of $b_{(k)}^r$ values.

(v) \mathbf{R}^{r} , \mathbf{R}^{t} - k x k observation error covarinces

• The regression model relating the 2 obs. packets:

 $-l^t = a + Bl^r$

• Scaled distance:

 $- d_{i(k)}^{2} = (l^{r} - l_{i}^{r})^{T} \mathbf{R}^{r-1} (l^{r} - l_{i}^{r}) + \frac{1}{2} (l^{t} - l_{i}^{t})^{T} \mathbf{R}^{t-1} (l^{t} - l_{i}^{t})$

• Substituting in for l^t (eq. 8):

 $- d_{i(k)}^{2} = (l^{r} - l_{i}^{r})^{T} \mathbf{R}^{r-1} (l^{r} - l_{i}^{r}) + \frac{1}{2} (a + \mathbf{B} l^{r} - l_{i}^{t})^{T} \mathbf{R}^{t-1} (a + \mathbf{B} l^{r} - l_{i}^{t})$

• By making this stationary we can then find the value of l^r that minimises the distance:

 $- \nabla_{l^{r}} d_{i}^{2} = \mathbf{R}^{r-1} (l^{r} - l_{i}^{r}) + \mathbf{B} \mathbf{R}^{t-1} (a + \mathbf{B} l^{r} - l_{i}^{t}) = 0$

• This happens when:

$$- l^{r} = \left(\mathbf{R}^{r^{-1}} + \mathbf{B}\mathbf{R}^{t^{-1}}\mathbf{B}\right)^{-1} \left[\mathbf{R}^{r^{-1}}l_{i}^{r} + \mathbf{B}\mathbf{R}^{t^{-1}}\left(a - l_{i}^{t}\right)\right]$$

- After substitution and factorisation the cost function which a and b minimises is expressed as:
 - $J[a,b] = \frac{1}{2} \sum_{i} d_{i}^{2} = \frac{1}{2} \sum_{i=0}^{m} \left[l_{i}^{t} a B l_{i}^{r} \right]^{T} (R^{t} + BR^{r}B)^{-1} \left[l_{i}^{t} a B l_{i}^{r} \right]$
- Still some issues to consider ...

- Approach still needs allow for non-coincidental scenes.
- Therefore we apply the following assumptions:
 - 1. Clear skies (for now)

2. Access to additional information about the scene from (a) accurate model geophysical variables, and (b) a RTM capable of simulating both instruments.

3. Both instruments share the same RTM

- Assumption 1: Employ the IASI L1c cloud flag
- Assumption 2: ERA 5 analysis + 10 member ensemble fields
- Assumption 3: Reference Forward Model (RFM), line-by-line RTM, can vary all inputs including spectroscopy, emissivity, atmospheric state vector and cloud properties

- Using these assumptions we can continue to adapt the method to account for non-coincidence.
- Expand the list of defined variables to include terms base don new assumptions.
- Define a set of relationships that link them.

Variable	Description	Variable	Description
x ^r	Atmospheric state vector for the reference instrument	x ^t	Atmospheric state vector for the target instrument
δx^r	Uncertainty on the reference instrument state vector	δx^t	Uncertainty on the target instrument state vector
θ^r	Viewing angle of the reference instrument	θ^t	Viewing angle of the target instrument
x_{true}^r	True version of x^r	x ^t _{true}	True version of x^t
lr	Observation packet from the reference instrument	l^t	Observation packet from the target instrument
δl^r	Uncertainty on reference observational packet	δl^t	Uncertainty on target observational packet
ır	Noise-free observation packet that a perfect	ιt	Noise-free observation packet that a perfect target
ⁱ true	reference instrument would observe	^ı true	instrument would observe
$h(x,\theta)$	The RTM output	ϵ^h	Uncertainty of RTM output
δx^{rt}	Difference in reference and target state vectors	$\delta \theta^{rt}$	Difference in viewing angles of reference and target instruments.

- We want to regress l^t to something close to l_{true}^t
- Using the defined relationships we can develop an expression for l_{true}^t

-
$$l_{true}^t = h(x_{true}^t, \theta^t) - \epsilon_2^h$$

- $l_{true}^{t} = l^{r} \delta l^{r} + \epsilon_{1}^{h} + \boldsymbol{H}_{x^{r},\theta^{r}} \delta x^{r} + \boldsymbol{H}_{x^{r},\theta^{r}} \delta x^{rt} + \boldsymbol{H}_{\theta^{r},x^{r}} \delta \theta^{rt} \boldsymbol{H}_{x^{t},\theta^{t}} \delta x^{t} \epsilon_{2}^{h}$
- This allows us to relate the l^r to the l^t_{true}, rearranging allows us to collect the terms:

• Final thing to consider is how to minimise the cost function.

$$J[\mathbf{a}, \mathbf{b}] = \frac{1}{2} \sum_{i} d_i^2 = \frac{1}{2} \sum_{i=1}^{m} \left[\mathbf{l}_i^{t} - \mathbf{a} - \mathbf{B} \mathbf{l}_i^{r} \right]^{T} \left(\mathbf{R}^{t} + \mathbf{B} \mathbf{R}^{r} \mathbf{B} \right)^{-1} \left[\mathbf{l}_i^{t} - \mathbf{a} - \mathbf{B} \mathbf{l}_i^{r} \right]$$

- The problem is not quadratic. Example: for a case of 2 pairs, single channel and Rr diagonal elements of possible values range from 0-1.5. This results in non-quadratic cost function with a less well-defined minimum, an a symmetric profile around the minimum, and a nearby maximum.
- Currently looking at methods to solve this, potential to use block gradient descent approach.

Outlook

- Functional pre-processing stage, which includes:
 - Scripts for downloading ERA5 data based on cluster information
 - User defined RTM functionality regarding Emissivity (λ), trace gases and clouds
- Creation of regression tool box
- Initial setup for RFM complete and tested for optimisation. Each SNO case requires 24 RFM runs jobs are submitted as an array of all cases in a cluster x 24.
- Currently working with 1 test cluster can run others when happy with RFM setup (no FCDR data needed at this stage).
- Create cluster meta data
- Build in ability to process collocations with GRUAN
 - additional complexity
 - GRUAN Processor (GAIA-CLIM)
- Inter-comparison between FIDUCEO methodologies
 - (see <u>http://www.fiduceo.eu/content/gracious-wobbling-new-dancing</u>)

Thank you for listening

