Bias Characterization for Five-year Reprocessed S-NPP ATMS Data Using RO Data from COSMIC, MetOp-A/-B and KOMPSAT

Xiaolei Zou

Earth System Science Interdisciplinary Center (ESSIC) University of Maryland, USA

Presented by Lin Lin

March 2018

- Data Description
- Quality Control (QC) Scheme
- Comparison of ATMS Biases with and without QC
- Comparison of ATMS Biases between Operational and Reprocessed Data
- Annual Variability of ATMS Biases at Nadir
- Scan-dependent Biases and their Annual Variability
- Summary

Mutual Benefits between ROs and Microwave Sounding Data

J Level-2 temperature using ATWS/AWSU-A retrieval

ATMS Instrument Characteristics

Channel NO.	Frequency (GHz)	ΝΕΔΤ (K)	Beam Width (deg)	Peak WF (hPa)	
1	23.8	0.5	5.2	Surface	
2	31.4	0.6	5.2	Surface] ⊢ Surface sensitive channels
3	50.3	0.7	2.2	Surface	\square
4	51.76	0.5	2.2	950	
5	52.8	0.5	2.2	850	
6	53.596±0.115	0.5	2.2	700	
7	54.4	0.5	2.2	400	
8	54.94	0.5	2.2	250	
9	55.5	0.5	2.2	200	
10	57.29	0.75	2.2	100	► Temperature sounding channels
11	57.29±0.217	1	2.2	50	
12	57.29±0.322±0.048	1	2.2	25	
13	57.29±0.322±0.022	1.25	2.2	10	
14	57.29±0.322±0.010	2.2	2.2	5	
15	57.29±0.322±0.0045	3.6	2.2	2	
16	88.2	0.3	2.2	Surface	
17	165.5	0.6	1.1	Surface	⊢ Window channels
18	183.31±7.0	0.8	1.1	800	
19	183.31±4.5	0.8	1.1	700	
20	183.31±3.0	0.8	1.1	500	Uumidity counding channels
21	183.31±1.8	0.8	1.1	400	
22	183.31±1.0	0.9	1.1	300	\square

ATMS Weighting Functions

Vertical Distribution of Weighting Functions for 22 ATMS Channels

A four steps quality control (QC) procedure for data selection:

Step 1: A Range Check

- RO profiles cover the layer 50-800 hPa
- T (unit: K) and N (unit: N unit) are positive

Step 2: Observation outliers are eliminated

• Observation with a z-score greater than 2.5

Step 3: Simulation outliers are eliminated

• Simulation with a z-score greater than 3.5

Step 4: O-B^{ECMWF} outliers are eliminated

• O-B with a z-score greater than 2.5

Given a sample $\{X_i, i=1, 2, ..., n\}$, Biweight Mean: $BM(X_{i}) = M + \frac{\sum_{i=1}^{n} (1 - w_{i}^{2})^{2} (X_{i} - M)}{\sum_{i=1}^{n} (1 - w_{i}^{2})^{2}}$ Biweight STD: $BSD(X_{i}) = \frac{\left(n \sum_{i=1}^{n} (1 - w_{i}^{2})^{4} (X_{i} - M) 2\right)^{1/2}}{\left|\sum_{i=1}^{n} (1 - w_{i}^{2}) (1 - 5w_{i}^{2})\right|}$ Z-score: $Z_i = \frac{X_i - BM(X_i)}{PCD}$ M — Median

MAD - Median absolute deviation $w_i = \frac{X_i - M}{7.5 \times MAD} - Weighting coefficient$

Some details of the above quality control (QC) can be found in the following article:

Zou, X. and Z. Zeng, 2006: A quality control procedure for GPS RO data. *J. Geoph. Res.*, **111**, D02112, doi:10.1029/2005JD005846.

COSMIC RO Data in January 2012 as an Example

- The top of all selected RO profiles is above 50 hPa
- The bottom of all selected ROs reaches below 800 hPa

QC Steps 3 and 4 — Removing Outliers

- RO data points that are removed by QC steps 1 and 2 are indicated in red
- Outliers (red) are found in observed (left) and simulated (right) refractivity

• Some observations deviate greatly from model simulations

• Observations deviate greatly from model simulations are removed

Total Number of RO Data not Selected

- Very little data are removed by the range check
- Outliers removed by QC steps 3 and 4 are less than 1.3%
- Data removed due to large O-B deviations are less than 2.2%
- More data are removed near 200 hPa and below 700 hPa

The S-NPP Life-Cycle Reprocessed ATMS Data

- Operational ATMS SDR data may have different bias characteristics over its life cycle due to constant updates of the cal/val algorithms
- Reprocessed ATMS SDR data are generated with the same cal/val algorithms throughout the S-NPP life cycle to remove calibration induced inconsistency
- The ATMS reprocessing involved a major update of a non-linearity coefficients correction (*wrong sign*)

DT_b of Ch10 (reprocessed minus operational)

Selection of ATMS Data Bias at Nadir

Daily RO profile counts from COSMIC MetOp-A MetOp-B KOMPSAT Collocated with nadir ATMS

100 80 Data Count 60 20 0 2012 2013 2015 2016 2017 2014 -COSMIC - MetOp-A - MetOp-B - KOMPSAT 30 Data Count 100 2012 2013 2014 2015 2016 2017 ● LEO 1 ● LEO 2 ● LEO 4 ● LEO 5 ● LEO 6

Daily COSMIC RO profile counts from LEO 1 LEO 2 LEO 4 LEO 5 LEO 6 Collocated with nadir ATMS

(<50 km, <3 hours)

Importance of QC for Bias Estimate

Post-Launch Calibration of ATMS Channels 5-13 by COSMIC and MetOp-A RO Data in 2012

- Biases are consistently negative for reprocessed ATMS channels 5-13
- Impacts of the proposed RO QC on ATMS biases are noticeable (The QC eliminated less than 4% of RO data as outliers.)
- ATMS biases are significantly different between operational and reprocessed data

Annual Variability of ATMS Bias and Std. Dev.

ATMS Data at All Field-of-Views (FOVs)

ATMS Scan-Dependent Biases

16

Five Year Evolution of ATMS Biases

- 1. A QC procedure was developed for selecting appropriate RO data for post-launch calibration of ATMS temperature sounding channels.
- 2. Biases estimated for reprocessed ATMS data by RO data are physically sound and reliable.