

Progress on FY-3/MWRI FCDR

Shengli Wu, Qifeng Lu, Fenglin Sun, Wei Zhang National Satellite Meteorological Center

Hongxin Xu, Jiakai He

Shanghai Institute of Space Communication Technology

GSICS MWSG

2021.01.21

FY-3/MWRI Introduction

		A A AM	
Takina			
	Hann	 2	
中国太陽卫星发射中		0	A P

Frequency(GHz)	10.65	18.7	23.8	36.5	89				
Polarization	V.H	V.H	V.H	V.H	V.H				
Band Width(MHz)	180	200	400	900	2×2300				
NeDT(k)	0.5	0.5	0.5	0.5	0.8				
Accurancy(k)	2.0	2.0	2.0	2.0	2.0				
BT Range(k)		3~340							
Scan Points	266(1.8s)								
Black Body Stability	0.3K								
Nonlinear	<1K								
Main Beam	≥90%								
Resolution <(km×km)	51×85	30×50	27×45	18×30	9×15				
Beam of different Channel	<0.07°								
Scan	Conic								
Orbit Width(Km)	≥1400								
Antenna angle(°)	45								
Scan Period(s)	1.8±0.1 (1.7/2.0)								
Scan Period	≤0.36ms* (2 Scan lines)								
Stability(IIIS)	≤1ms(30 minutes)								

Current Status and Future Plan

在轨运行微波成像仪	2010年	2011年	2012年	2013年	2014年	2015年	2016年	2017年	2018年	2019年	2020年
	Q1 Q2 Q3 Q1	QI Q2 Q3 Q1	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q1	Q1 Q2 Q3 Q1	Q1 Q2 Q3			
FY-3B/MWRI											
FY-3C/MWR1				-							
FY-3D/MWRI											

2021:FY-3F(Morning orbit, Antenna size: 1.8m); 2022:FY-3P(Low orbit, Antenna size: 1.6m); 2023:FY-3G(Afternoon orbit, Antenna size: 1.8m); Antenna performance and NedT improved based on FY-3 02

	FY-3A/B/C/D MWRI	FY-3F/G/P MWRI
Frequency (GHz)	10/18/23/36/89	10/18/23/36/50/89/1 18/166/183
Antenna (m)	1	1.8/1.6
NedT (K)	0.8/1.0	0.5/0.8
Accuracy (K)	2.0	0.8/1.2
Co-location (Km)	/	2
Main beam	0.9	0.95

Global Radiometer(Imager) History and Future

Channel	At launch η	V04 η	ΔTb at 200 K
10.65 V-pol	0.94435	0.95404	1.94
10.65 H-pol	0.94369	0.95404	2.07
18.7 V-pol	0.93968	0.95603	3.27
18.7 H-pol	0.94082	0.95603	3.04
23.8 V-pol	0.96601	0.97075	0.95
36.64 V-pol	0.9959	0.99535	-0.11
36.64 H-pol	0.9959	0.99535	-0.11
89.0 V-pol	0.9981	0.99734	-0.15
89.0 H-pol	0.9981	0.99734	-0.15
166.0 V-pol	1.0	0.98814	-2.37
166.0 H-pol	1.0	0.98814	-2.37
183.31±3 V-pol	1.0	0.99212	-1.58
183.31±7 V-pol	1.0	0.99212	-1.58

 TABLE 9. On-orbit error analysis for GMI over ocean scenes. The results show an rms of all GMI channels. DSC stands for deep space calibration.

Error term	Static bias (K)	Time-varying error (1σ) (K)	Notes
Earth magnetic field correction	0	0.08	20% of rms for all channels
Instrument magnetic correction	0	0.02	20% of rms for all channels
Count bias correction	0.04	0	20% of DSC count bias, rms for all channels
Hot load	0.06	0.10	Preflight predict (1σ) , scaled to 200-K ocean
Cold sky	0.04	< 0.01	Preflight predict (rms), scaled to 200-K ocean
Nonlinearity	0.05	0	Preflight predict (1σ) , scaled to 200-K ocean
Along-scan bias correction	0.00	0.02	20% of rms for all channels
Total T_A error	0.10	0.13	RSS of contributors
Inertial hold backlobe Earth T_B	0.07	< 0.01	Results from 2-K error of $T_{B,eff}/2$
Inertial hold T_A calibration	0.21	0.02	Results from 0.2-K error of $(T_{Av} + T_{Ah})/2$
Inertial hold spillover annulus	0.07	< 0.01	Results from 30% error on η_a
Total spillover correction error	0.23	0.02	RSS of contributors
X-pol correction error	0.03	0.03	25% of value, rms for all channels
Total T_B error (ocean scene)	0.25	0.14	RSS of T_A , spillover, and X-pol errors

Satellite (sensor)	6–7 GHz	10 GHz	19 GHz	23 GHz	31–37 GHz	85–92 GHz	150–166 GHz	183 GHz
GPM (GMI) Conical		10.65v 10.65h	18.7v 18.7h	23.8v	36.64v 36.64h	89.0v 89.0h	166.0v 166.0h	183.31 ± 3v 183.31 ± 7v
TRMM (TMI) ^a Conical		10.65v 10.65h	19.35v 19.35h	21.3v	37.0v 37.0h	85.5v 85.5h		
GCOM-W1 (AMSR2) Conical	6.925v 6.925h 7.3v	10.65v 10.65h	18.7v 18.7h	23.8v 23.8h	36.5v 36.5h	89.0v (A) 89.0h (A) 89.0v (B)		
DMSP <i>F16–F19</i> (SSMIS) conical	7.3h		19.35v 19.35h	22.235v	37.0v 37.0h	89.0h (B) 91.655v 91.655h	150.0h	$183.31 \pm 1h$ $183.31 \pm 3h$ $183.31 \pm 6.6h$
<i>MetOp-A/B</i> , <i>NOAA-18/NOAA-19</i> (MHS) cross track						89qv	157.0qv	183.31 ± 1qh 183.31 ± 3qh 190.31qv
Suomi-NPP (ATMS) cross track				23.8qv	31.4qv	88.2 qv	165.5qh	183.31 ± 1.0 qf 183.31 ± 1.8 qf 183.31 ± 3.0 qf
			Incide GMI:	ence an 52.82	gle: 1			183.31 ± 4.5 qh 183.31 ± 7.0 qh
Megha-Tropiques (SAPHIR) cross track			MWR AMSF	32:02 1: 53 32: 55	-			$183.31 \pm 0.2qH$ $183.31 \pm 1.1qH$ $183.31 \pm 2.8qH$ $183.31 \pm 4.2qH$ $183.31 \pm 6.8qH$ $183.31 \pm 11qH$
Coriolis (WindSat) conical ^b	6.8v 6.8h	10.7v 10.7h 10.7–3rd 10.7–4th	18.7v 18.7h 18.7–3rd 18.7–4th	23.8v 23.8h	37.0v 37.0h 37.0–3rd 37.0–4th			

Error Source of MWRI Calibration.

- Back lobe of hot reflector
- Emission of hot reflector
- Hot load efficiency
- RFI Via cold reflector
- Non-linearity of receiver

Roadmap of Recalibration

$$\begin{split} L_W &= \\ &= T_{EA}(1-\eta_A) \\ &- \eta_A \{T_{ET}(1-\eta_T) \\ &+ \eta_T [(1-\varepsilon)T_{EC}(1-\eta_H) + (1-\varepsilon)T_H \eta_H \\ &+ \varepsilon T_R] \} \end{split}$$

$$L_{nl} = u \times G^2 \times (C_0 - C_C) \times (C_0 - C_W)$$

$$u = f(T_{rec}, AGC)$$

$$L_O = L_W + \frac{L_W - L_C}{C_W - C_C} \times (C_O - C_W) + L_{nl} + \Delta L_A$$

- (1) Back-lobe
- (2) hot reflector ε ;
- (3) Hotload
- (4) non-linear correction

$$\Delta L_A = L_{sys} \left[\frac{1}{\Delta v \tau} + \left(\frac{\Delta G}{G} \right)^2 \right]^{1/2}$$

SNO and DD Between MWRI and GMI(89H)

100,000 80,000 60,000 40,000

20,000

-2

-1 0

-45

-90+

GEO-Statistics For (MWRI_Cal-MWRI_Simu)-(GMI_Cal-GMI_Simu) 89.0_TH data/mwri/FY3C_MWRI_GMI_V1_7x7.h5

BIAS

Advantage of Double Difference

- MWRI $Bt^M B^M$
- GMI Bt^GB^G
- Real BT of SNO points: Bt^{TM} , Bt^{TG}
- SNO: $Bt^M Bt^G = (Bt^{TM} + \sigma^M) (Bt^{TG} + \sigma^G) = (Bt^{TM} Bt^{TG}) + (\sigma^M \sigma^G)$
- DD: $(Bt^{M} B^{M}) (Bt^{G} B^{G}) = (Bt^{TM} + \sigma^{M}) (Bt^{TG} + \sigma^{G}) (B^{M} B^{G}) = (Bt^{TM} Bt^{TG}) + (\sigma^{M} \sigma^{G}) (B^{M} B^{G}) = (\sigma^{M} \sigma^{G}) + (Bt^{TM} B^{M}) (Bt^{TG} B^{G}) \cong (\sigma^{M} \sigma^{G})$

Difference of Model accuracy in the 2 SNO points (~0)

MWRI Recalibration Algorithm

Algorithm	V1.0	V2.0					
		V1.1	V1.2				
Back lobe	Using single orbit get back lobe factor	Global data	Improve data quality control				
Hot reflector	Correction based on A/D Bias	Correction based on difference of phys temperature of hotload and hot reflected	Improve data quality control				
Hot load	-	Using rain forest data to get better hot parameter	Using data near the hotload temperature				
Nonlinear	-	Using new back lobe, hot reflector and parameters, and double difference data surface, do the correction of u, and the ship between u and receiver temperatu	Using different AGC				
		Re-cal Parameters	me series				
FY-3B/MWRI		2014 2010-201		19			
FY-3C/MWRI		2014 2013-202)20			
FY-3B/MWRI		2018	2017-present				

Time

Time

Recal V2.0

Diagram of Bright Temperature Dif (MWRI_Cal vs GMI_Cal) MWRI_GPM_GMI_V0-1.2 36.5_TH

Diagram of Bright Temperature Dif (MWRI_Cal vs GMI_Cal) MWRI GPM GMI V0-1.2 89.0 TV

Diagram of Bright Temperature Dif (MWRI_Cal vs GMI_Cal) MWRI_GPM_GMI_V0-1.2 89.0_TH

Recal V1.0

Diagram of Bright Temperature Dif (MWRI_Cal vs GMI_Cal) MWRI_GPM_GMI 36.5_TH

Diagram of Bright Temperature Dif (MWRI_Cal vs GMI_Cal) MWRI_GPM_GMI 89.0_TV

Diagram of Bright Temperature Dif (MWRI_Cal vs GMI_Cal) MWRI_GPM_GMI 89.0_TH

Operational

Diagram of Bright Temperature Dif (MWRI_Cal vs GMI_Cal) MWRI GPM GMI V0-0 36.5 TH

Diagram of Bright Temperature Dif (MWRI_Cal vs GMI_Cal) MWRI_GPM_GMI_V0-0 89.0_TV

Diagram of Bright Temperature Dif (MWRI_Cal vs GMI_Cal) MWRI_GPM_GMI_V0-0 89.0_TH

FY-3B/C/D MWRI

shannal	Typical	Mean of RMSE (K)					
channel	(K)	operational	Recal V1.0	Recal V2.0			
		FY-3B					
10V	166.2	5.00	5.00	1.15			
10H	91.8	5.66	5.68	1.21			
18V	119.4	1.91	1.87	1.26			
18H	127.5	3.12	3.15	1.34			
23V	224	2.51	2.46	1.29			
36V	223.5	5.76	5.59	0.94			
36H	172.1	1.62	2.03	1.10			
89V	268.8	2.13	2.19	1.02			
89H	248.8	4.24	3.85	1.34			
FY-3C							
10V	166.2	5.85	5.85	0.88			
10H	91.8	8.12	8.15	0.91			
18V	119.4	2.27	2.72	1.07			
18H	127.5	2.13	2.13	1.08			
23V	224	1.95	1.95	1.10			
36V	223.5	3.69	3.69	1.04			
36H	172.1	2.87	2.87	1.26			
89V	268.8	1.62	1.62	0.88			
89H	248.8	1.38	1.38	1.15			
		FY-3D					
10V	166.2	5.51	5.51	0.91			
10H	91.8	6.80	6.87	1.04			
18V	119.4	1.32	1.33	0.93			
18H	127.5	1.79	1.80	1.08			
23V	224	1.41	1.45	1.02			
36V	223.5	4.28	4.24	0.94			
36H	172.1	4.41	4.39	1.09			
89V	268.8	1.64	1.63	0.93			
89H	248.8	1.82	1.76	1.33			

Thanks

