System vicarious calibration for the Geostationary Ocean Color Imager (GOCI)

Korea Ocean Satellite Center Korea Institute of Ocean Science and Technology

Jae-Hyun Ahn

(brtnt@kiost.ac.kr)

Table of Contents

- Ocean Color Remote Sensing
- Geostationary Ocean Color Imager Series
- Atmospheric Correction
- Vicarious Calibration
- Summary

KIOST

Ocean color remote sensing

• The reflectance spectra of ocean is determined sun light interacted by substances or particles in the sea water

Ocean color remote sensing

• The reflectance spectra of ocean is determined sun light interacted by substances or particles in the sea water

5

RIOST 한국해양과학기술원

KIOST

KOSZ

Spatial resolution comparison between GOCI and GOCI-II (2021/02/16 12:25)

- 주목하는 천리안 해양관측위성 해양수산부의 세계최초 정지궤도 해색위성

KIOSI

. 해색위성

8

한국해양과학기술원

Ocean Color Remote Sensing from Geostationary Orbit

Diurnal migration of harmful algal blooms (red tide)

13th/August/2013, GOCI diurnal Chl-a images

9

KIOST

Ocean Color Remote Sensing from Geostationary Orbit

Diurnal variability turbidity (suspended sediment monitoring)

30th/May/2016, GOCI diurnal R_{rs}(660 nm) images

09:16 (local), *R_{rs}*(660 nm)

13:16 (local), *R_{rs}*(660 nm)

15:16 (local), *R_{rs}*(660 nm)

Atmospheric Correction for Ocean Color Remote Sensing

KOSZ

KOSZ

15

KIOST छन्द्रअंक्ष्य्यवंगह्वस्रि

Calibration approach is almost identical to Franz et al. (2007)

Step 1. 2nd last NIR band (745 nm) calibration

• Assuming that the last NIR band (865 nm) is already calibrated

Step 2. VIS bands calibration

• Atmospheric radiance and transmittance can be accurately computed with inter-calibrated two NIR bands

19

KIOST

GOCI 745 nm calibration example

• 2nd last NIR band (745 nm) calibration

- Assuming that the last NIR band (865 nm) is already calibrated

Estimated by radiative transfer simulation <

directly derived from $L_a(865 \text{ nm}) + L_{ra}(865 \text{ nm})$ by using spectral relationship of

KIOS

Impact of NIR calibration site

KOSZ

21

인국해양과학기술원

GOCI VIS bands calibration example

- VIS bands calibration
 - Assuming that atmospheric radiance and transmittance can be accurately derived _ from inter-calibrated two NIR bands

Fig. Verification of the vicarious calibration gain factors. Red circles and blue squares represent the GOCI and in situ R_{rs} match-up pairs derived with- and without vicarious

KIOS

VC result can be different by different approach

23

KIOS

Validation of GOCI Data After Applying the Vicarious Calibration²⁴

In situ radiometric data for the validation

Fig. Locations of *in situ* radiometric measurements in coastal and open-ocean waters around Korea. A total of 421 samples were collected, and subsequently reduced to 65 (blue diamonds) through strict quality control of both the *in situ* measurements and GOCI observations. Of these data, only 12 spectra were used in the vicarious calibration process (green squares).

AERONET-OC data from leodo & Socheongcho station

Validation of GOCI Data After Applying the Vicarious Calibration²⁵

Validation results with *in situ* data

하는 천리안 해양관측위성 해양수산부의 세계최초 정지궤도 해색위성

ELIOST Straight Strai

Validation of GOCI Data After Applying the Vicarious Calibration²⁶

Validation results with other satellite data

177 주목하는 천리안 해양관측위성 해양수산부의 세계최초 정지궤도 해색위성

2017.01

2017.01

KIOS

Summary

- Vicarious calibration is necessary to enhance agreement between atmospheric correction & sensor system and actual observation
- GOCI Atmospheric correction and vicarious calibration have been developed theoretically based on the NASA ocean color mission's approach
- GOCI had been successfully calibrated through a long-term vicarious calibration efforts

해양수산부의 세계최초 정지궤도 해색위성

Vicarious calibration for GOCI-II

- GOCI-II requires further reference remote-sensing reflectance (R_{rs}) dataset at the ocean surface for the VC
 - The GOCI-II initial VC uses *R_{rs}* dataset from MODIS-aqua and VIIRS processed by NASA OBPG
 - Due to the early termination of the GOCI mission, we could not collect sufficient GOCI R_{rs} dataset
 - Further in situ R_{rs} dataset is necessary for the GOCI-II VC

해색위성

How can GOCI data contribute to the calibration of other sensors?

- After the vicarious calibration, we can provide water-leaving radiance for other sensors' calibration within 10% error over oligotrophic ocean
- Hyper spectral water-leaving radiance in 350~900 nm can be modeled from MODIS, VIIRS, GOCI, and GOCI-IIs' atmospheric correction result

KIOS

Thank you!

Further questions, brtnt@kiost.ac.kr