

Calibration and validation of FengYun satellites thermal infrared channels using unmanned surface vehicle at CRCS Lake Qinghai

Presented by Yong Zhang

Contributors: Lijun Zhang¹, Yidan Si¹, Dongyu Duan¹, Yonghong Hu², Lin Yan², Hongbin Chen³, Yu Zhao³, Wenzheng Wang³, Xiaopeng Hao⁴, Zundong Yuan⁴

National Satellite Meteorologic Center, China Meteorological Administration
 Aerospace Information Research Institute, Chinese Academy of Sciences
 Institute of Atmospheric Physics, Chinese Academy of Sciences
 National Institute of Metrology, China

Outline

- Background and motivation
- Satellite data analysis
- USV data processing
- Atmospheric parameters processing
- Radiative transfer simulation
- Calibration and validation results
- Preliminary results of CRCS Lake Qinghai 2021

FengYun satellites have launched 19 since 1988

China Radiometric Calibration Sites (CRCS)

Lake Qinghai Site: Lake Qinghai is the largest saline of China and located in the northeast of Tibet Plateau. Lake Qinghai (36°45N, 100°20E) is located 150km from Xining City, capital of Qinghai Province. Its total area is 4473 km² and the perimeter is 360km The elevation of the water surface is 3196 m and the cubage of the lake is 105 Gm³. It is a good place for IR bands' calibrating.

Fig. 1. Location, (Left) altitude, and (Right) surrounding environment of Lake Qinghai. The data were collected from the SRTM DEM and ESA-CCI land cover product in 2015. The marked square 1 in right is the location of the field experiment, and square 2 is the location for selecting clear sky pixels from satellite images when square 1 is influenced by cloud cover.

Using CRCS Lake Qinghai to validate and evaluate onboard calibration accuracy.

2021/12/2

CRCS Lake Qinghai field campaign 2019

Changes in the way of measuring on the lake

- Reduce labor and financial costs
- Ensure the safety of personnel

 Table 1. Specifications of the Fengyun 3D Advanced Medium Resolution Spectral Imager (FY3D MERSI-II).

FY-3D MERSI and FY-4A AGRI

Band Center Wave- Bandwidth Spatial Resolu- SNR or Maximum Reflectance ϱ or ΝΕΔΤ (Κ) Number length (µm) tion (m) Dynamic Range (K) (nm) 0.47 250 50 100 90% 1 2 0.55 50 250 100 90% 3 0.65 50 250 100 90% 4 0.865 50 250 100 90% 5 1.38 20/30 1000 60/100 90% 6 1.64 50 1000 200 90% 7 2.13 50 1000 100 90% 8 0.412 20 1000 300 30% 9 0.443 20 1000 300 30% 10 0.49 20 1000 300 30% 11 0.555 20 1000 500 30% 12 0.67 20 1000 500 30% 13 0.709 20 1000 500 30% 20 1000 14 0.746 500 30% 15 0.865 20 1000 500 30% 16 0.905 20 1000 200 100% 17 0.936 1000 20 100 100% 18 0.940 50 1000 200 100% 19 1.030 20 1000 100 100% 20 3.800 180 1000 0.25 K 200-350 K 21 4.050 155 1000 0.25 K 200-350 K 22 7.200 500 1000 0.30 K 200-350 K 23 0.25 K 200-350 K 8.550 300 1000 24 0.40 K 10.800 1000 250 200-350 K 25 12.000 1000 250 0.40 K 200-350 K

TABLE I SPECTRAL AND SPATIAL SPECIFICATIONS OF FY-4A AGRI

	Band (µm)	Spatial Resolution(km)	Sensitivity	Main Application
1	0.45~0.49	1	S/N≥90(ρ=100%)	Aerosol
2	0.55~0.75	0.5~1	S/N≥200(ρ=100%)	Fog, Cloud
3	0.75~0.90	1	S/N≥5(ρ=1%)@0.5Km	Vegetation
4	1.36~1.39	2		Cirrus
5	$1.58 \sim 1.64$	2	S/N≥200(ρ=100%)	Cloud, Snow
6	2.1~2.35	2~4		Cirrus, Aerosol
7	3.5~4.0(High)	2	NE∆T≤0.7K(300K)	Fire
8	3.5~4.0(Low)	4	NE∆T≤0.2K(300K)	Land surface
9	5.8~6.7	4	NE∆T≤0.3K(260K)	WV
10	6.9~7.3	4	NE∆T≤0.3K(260K)	WV
11	8.0~9.0	4	NE∆T≤0.2K(300K)	WV,Cloud
12	10.3~11.3	4	NE∆T≤0.2K(300K)	SST
13	11.5~12.5	4	NE∆T≤0.2K(300K)	SST
14	13.2~13.8	4	NE∆T≤0.5K(300K)	СТН

NEAT = noise equivalent differential temperature, WV = water vapor, SST=sea surface temperature, CTH=cloud top height.

Spectral and spatial specifications

Satellite data analysis

Satellite observing CRCS Lake Qingho

Field campaign period from Aug. 16 to 20, 2019

2019-08-17 12:00 Julian day-229

2019-08-18 12:40 Julian day-230

2019-08-19 11:45 Julian day-231

2019-08-20 12:30 Julian day-232

2019-08-17 13:35

2019-08-16 14:30

Julian day-228

Julian day-229

2019-08-18 14:20 Julian day-230

2019-08-19 13:25 Julian day-231

2019-08-20 14:05 Julian day-232 2021/12/2

FY3D image on Aug. 18 at Lake Qinghai

FY3D_MERSI_GBAL_L1_20190818_0630_1000M_MS

FY3D BAND24

FY3D BAND25

FY3D observing time:14:30 (Beijing time)

Observing geometry Sensor azimuth: 261.50480000 Sensor zenith: 21.33440000 Sun azimuth: 219.20280000 Sun zenith: 28.47040000

MERSI Band #24					
ROI	DN	Stand Deviation	Bright Temperature	Stand Deviation	
ROI #1	9243.64	29.464498	289.7364754	0.196894	
ROI #2	9499.04	92.131464	291.4301803	0.607283	
ROI #3	9470.79	38.923726	291.2441062	0.256782	
ROI #4	9366.84	18.814179	290.5567243	0.124831	
ROI #5	9370.28	16.634602	290.57954	0.110316	
ROI #6	9383.16	52.343163	290.6649247	0.346384	

MERSI Band #25					
ROI	DN	Stand Deviation	Bright Temperature	Stand Deviation	
ROI #1	10664.4	35.046398	288.9308716	0.225404	
ROI #2	10881.88	37.802469	290.3222743	0.240534	
ROI #3	10840.2	53.172105	290.0567281	0.339319	
ROI #4	10763.64	43.268426	289.5675878	0.277051	
ROI #5	10807.4	32.843061	289.8473879	0.209806	
ROI #6	10730.2	53.311975	289.3533785	0.341171	

TABLE II SATELLITE IMAGES SELECTED IN REGION 1 AND REGION 2 FOR DERIVING BT DURING RADIOMETRIC CALIBRATION EXPERIMENTS

	USV			USV	
Overnass	location Rn		Overnass	location	Rn
Overpass	(lon_lat)	i cui	Overpuss	(lon_lat)	i cui
12.15	100 64509		12.15	100.62601	
15:15, August 19	26 55 42 1	2	12:13, August 20	100.03091,	2
12.10	100 64506		12.10	100 63083	
15:19, August 18	26 55 42	2	12:19, August 20	100.03983,	2
August 16	100 64502		August 20	100 64269	
15.25, August 19	26 55 42 4	2	12.23,	26 58424	2
August 10	100 64507		12.20	100 64759	
15.50,	26 55 427	2	12.50,	26 58 42 4	2
August 16	100 64512		August 20	100 64972	
15:54,	26 55 440	2	12:54,	100.048/3,	2
August 18	30.33449		August 20	30.38314	
15:58,	100.64535,	2	12:38,	100.03091,	2
August 18	30.55000		August 18	30.58412	
14:34,	100.6462,	1	12:45,	100.64804,	2
August 18	36.57549		August 20	36.57875	
14:38,	100.64491,	1	12:49,	100.64698,	2
August 18	36.57546		August 20	36.57522	
14:45,	100.6425,	1	12:53,	100.6451,	2
August 18	36.57545		August 18	36.5755	2
14:49,	100.63941,	1	13:15,	100.63588,	2
August 18	36.57544	1	August 20	36.57658	2
14:53,	100.62791,	1	13:19,	100.63615,	2
August 18	36.57542	1	August 20	36.57853	2
			13:23,	100.63635,	2
			August 20	36.57996	Z
			13:30,	100.63689,	2
			August 20	36.584	2
			13:34,	100.64297.	2
			August 20	36.58436	2
			13:38,	100.64634,	2
			August 20	36.58437	2

Rn: Region number (region 1 or region2 in the lake)

*Local time used here to delineate satellite overpass time

Fig. 5. Distribution of water temperature (K) over the lake surface. The 15 AGRI images were used to derive the (a) averaged temperature and (b) temperature variation during the selected period. In order to examine the details of temperature gradient from west to east in the lake, a transect [dotted line (a) and (b)] was used here to examine (c) water temperature change

Solar Power Unmanned Boat Modification

 In order to meet the requirements of Lake Qinghai satellite-ground synchronous observation field test, the unmanned boat was modified, and the CE312 radiometer was mounted on the boat for water surface observation.

Water temperature and salt sensor

1 The height of the equipment from the water surface is not less than 1.5 meters

2 The probe detects no interference within 25 $^\circ$

When in use, the electric telescopic rod extends the straight rod 600mm, the probe performs the measurement, and then returns the collected data to the ground station. After the work is completed, the straight rod is retracted.

Installation and commissioning before the release of the unmanned boat

Advantages of unmanned boats: Track planning, automatic observing, save manpower, and the hull has little impact on the water surface;

殓 遥感卫星辐射定标与真实性检验

Track record of unmanned boat observing 2019-08-18

Atmospheric parameters processing

Radiosonde data 2019-08-18~21

CE318 sun photometer data processing

0.208

0.138

0.209

<u>0.1</u>39

0.285

0.264

0.258

0.213

0.196

0.124

0.464

1.029

Beijing Time

12/2/2021

8.20

Mean

1.19~1.578

0.192

0.118

Spectral matching

- Combinations in the MODTRAN simulation were adopted to generate their relative TOA spectral radiance, including 9 different targets (cloud cover, desert, dry grass, field, forest, fresh snow, maple, ocean, and wet grass), 2 satellite view angles (0° and 10°), 6 built-in atmospheric profiles of MODTRAN (Tropical, Midlatitude Summer/Winter, Sub-Arctic Summer/Winter, U.S. Standard), and 9 boundary temperatures (278 K, 283 K, 288 K, 293 K, 298 K, 303 K, 208 K, 212 K, and 320K).
- The spectral matching were derived from the 972 pairs of unified channel equivalent radiance using linear regression analysis.

12/2/2021

Prediction for at-sensor temperature by radiative transfer model

Comparison for the predicted atsensor brightness temperature and satellite-derived at-senor brightness temperature during the selected period of field campaign. Brightness temperature bias is calculated by using satellite-derived at-sensor BT minus predicted at-sensor BT.

The calibration site with high altitude and dry atmosphere has great advantages in reducing the influence of the atmosphere for ground-based radiometric calibration experiments, and Lake Qinghai is one of the most representative sites with 3196 m elevation. The parameters (surface atmospheric conditions, atmospheric profiles and satellite observation information) were edited and adopted in the Moderate Resolution Atmospheric Transmission Model (MODTRAN 4.0) to derive path radiance and spectral transmittance during propagation process from lake surface to TOA. Then, the simulation results from MODTRAN were convolved with the instrument channel spectral response functions (RSR) to obtain the band-averaged values of the atmospheric parameters. Finally, the at-senor radiance was predicted by reducing the influence of atmospheric absorption and scattering.

Calibration and validation results

- This field campaign investigated the absolute radiometric calibration accuracy of FY4A AGRI and FY3D MERSI thermal infrared band data with field measurement data collected in Lake Qinghai on August 18 and 20, 2019.
- An USV equipped with TIR radiometers was used to continuously collect the water surface skin temperature and surface atmospheric parameters. The atmospheric profiles were measured near calibration experiment site. The atmospheric transfer code was used to simulate path radiance and transmittance propagated from land surface targets to satellite instrument entrance aperture.
- We also proposed a spectral matching method based on atmospheric transfer simulation to eliminate spectral mismatch between CE312 and FY4A AGRI/ FY3D MERSI TIR channels.
- For FY4A AGRI, the calibration accuracy between split-window bands 12 and 13 reached 0.12 K with a RMSE of ±0.17 K and 0.61K with a RMSE of ±0.22 K on August 18 based on exactly concurrent experiment measurements, while it reached -0.01K with a RMSE of ±0.13 K and -0.48K with a RMSE of ±0.17 K on August 20 using satellite at-sensor brightness temperature from replaced measurement region in west part of the lake.
- For FY3D MERSI, the difference between the simulated brightness temperature and satellite brightness temperature is less than -0.346K and -0.722K for channel 24 on August 18 and 20, while it increases to -0.460K and -1.036K for channel 25 on August 18 and 20, respectively.
- Therefore, the absolute radiometric accuracy specified for AGRI and MERSI bands was achieved in AGRI bands 12/13 and MERSI bands 24/25 with calibration error less than 1 K in most cases, which indicates that AGRI and MERSI TIR bands have a good functional status.

Preliminary results of CRCS Lake Qinghai 2021

- From Sep.16 to 24, field campaign for FY3E and FY4B onorbit test, calibration and validation for FY3D and FY4A.
- Upgraded unmanned boat equipped with CE312 measuring water surface infrared radiance.
- Added video surveillance on board

Appreciate the help of Hongbin Chen's USV group from the Key Laboratory of Middle Atmosphere and Global Environment Observation (LAGEO), the Institute of Atmospheric Physics, and the Chinese Academy of Sciences.

2021/9/23 USV CE312 data

:00:54 :05:17 :09:24 :09:24

17:42 22:11 26:19 30:35 33:11

:43:51 :47:56 Calibration evaluation preliminary results

—10.8um —8.7um	Time	Sat	Band	Simulated BT	Observed BT	Diff	
	9.22 18:37	Е	10.8um	285.1113094	285.768165	-0.65686	
			12um	284.3188356	284.427184	-0.10835	
	9.23 6:58	Е	10.8um	285.0539585	284.399176	0.654782	
			12um	284.5785044	283.17882	<mark>1.399684</mark>	
	9.23 18:18	Е	10.8um	285.6467885	284.895965	<mark>0.750824</mark>	
			12um	285.2482131	283.568298	<mark>1.679915</mark>	
	9.21 14:36	D	10.8um	284.8564835	284.399176	<mark>0.457308</mark>	
			12um	284.226621	283.646043	0.580578	

12/2/2021

100°0"0"E

100°0"0"E

12.5

Track record of unmanned boat

100°20'0"E

:20:29

100°40'0"E

99°40'0"E

N...0.0048

N..0.010.98

TBB/K

253

99°40'0"E

Thanks for your attention!

zhangyong@cma.gov.cn