GSICS VIS/NIR monthly meeting (Apr 2022)

Radiance biases based on ray-matching for sensors onboard GK-2 series

Yeeun Lee, Myoung-Hwan Ahn, Mina Kang, Mijin Eo

April 14, 2021

Content

1. Introduction

- Geostationary Korean Multi Purpose Satellite -2A/B (GK-2A/B)
- **GEO & LEO** sensors for inter-comparison of GEMS
- Calibration methods applied to AMI, GEMS & GOCI-2

2. Data & methods

- Data specification & collocation process
- ***** Scene selection with scene homogeneity conditions

3. Results & further approach

- Seasonal variation in AMI & GEMS comparison results
- **SZA** effect in radiance comparison
- Diurnal variation in AMI & GEMS comparison results

1. Introduction

Geostationary Korean Multi Purpose Satellite -2A/B (GK-2A/B)

Sensor	AMI	GEMS	GOCI-2	
Satellite	GK-2A (Dec. 2018)	GK-2B (F	eb. 2020)	GK-2A
Description	Meteorological imager (VNIR/IR)	Environmental spectrometer (UV/VIS)	Ocean color imager (UV-NIR)	GK-2B
Spectral range	0.47-13.3 μm	300-500 nm (FWHM < 0.6 nm)	380-900 nm	
No. of bands	16 (4 VIS & 12 IR)	Hyperspectral (Δ = 0.2 nm)	13 (12 VNIR & 1 wide)	Sub-nadir satellite longitude = 128.2°
Spatial resolution	1 km (VIS), 2 km (IR)	$3.5 \times 8 \text{ km}^2$	0.25 km	
Spatial coverage	Full Disk (10 min.)	5°S-45°N, 75-145°E	25-50°N, 110-150°E	Original image Credit: KARI

1. Introduction

GEO & LEO sensors for inter-comparison of GEMS

2. Data & methods

Data specification and collocation process

Sensor specification & Spectral Response Function (SRF) of AMI & GOCI-2

- Spectral matching: SRF convolution
- Spatial matching: $0.1^{\circ} \times 0.1^{\circ}$
- Time difference: scene selection

Sensor	AMI	GEMS	GOCI-2
Spectral	470	300-500	380, 412, 443
range [nm]	(B1)	(Δλ=0.2)	(B1~B3)
Time interval	Every	hh:45	hh:15
	10 minutes	(00-08 UTC)	(00-08 UTC)
SZA & VZA	θ < 40°		

2. Data & methods

***** Scene selection with scene homogeneity

* STD: Standard deviation

Dec. 15, 2020 (02 UTC)

Spatial & temporal variation calculated w/ AMI R_{470 nm}

6

2. Data & methods

GEMS & AMI with temporal & spatial homogeneity conditions (470 nm)

Seasonal variations (every 10 days, 11/2020-05/2021)

Seasonal variations (every 10 days, 11/2020-05/2021)

Seasonal variations (every 10 days, 11/2020-05/2021)

• Positive bias becomes larger at the higher signals

Image credit: Eunkyu Kim (NMSC, GSICS meeting)

SZA effect in radiance comparison

SZA effect in radiance comparison

Diurnal variations (every 10 days, 11/2020-05/2021)

Diurnal variations (every 10 days, 11/2020-05/2021)

15

Diurnal variations (every 10 days, 11/2020-05/2021)

• Difference between GEMS & AMI increases -> Difference has clear diurnal variation.

Advantages of using GOCI-2 measurements for inter-comparison

- GOCI-2 has a narrow band width and could cover multiple channels at 380, 412 & 443 nm.
- Rayleigh scattering effects caused by 30-min time lag between GEMS & GOCI-2 needs to be reduced

Summary & further study

- AMI, GEMS and GOCI-2 onboard GK-2A/2B have an advantage in satisfying ray-matching conditions.
- GEO-GEO comparison can provide useful information as the collocated data could cover the whole measurement time and angle conditions.
- AMI & GEMS show high correlation (~0.99) with the spatial homogeneity test, but GEMS tends to be higher for the brighter scenes and have overall positive bias.
- The positive bias is attributed to the spectral dependence in the GEMS measurements (over 450 nm) and the stronger bias for brighter scenes might be caused by AMI.
- GOCI-2 & GEMS could be compared by reducing the Rayleigh scattering effects caused by the time lag (~30 min) between sensors with optical path length correction.

Furtherly,

- It is expected that the GEO-GEO comparison results could support the GEO-LEO comparison.
- MTG-FCI & Sentinel 4 (to be launched) have similar conditions with AMI & GEMS which indicates the approach also could be applied to the other sensors measuring UV/VIS spectral range.

Thank you

