

Development and Future Plans of Water-related Microwave Missions in Japan

Misako KACHI, Moeka YAMAJI and Takuji KUBOTA Earth Observation Research Center, Space Technology Directorate I Japan Aerospace Exploration Agency (JAXA)

Feb. 28, 2022 @ GSICS MWSG Workshop

Japanese Earth Observation Satellites/Sensors

Water-related Microwave Missions in Japan

Constructing long-term precipitation radar datasets by TRMM/PR (1997-2015) and the GPM/DPR (2014-)

- GPM/DPR's calibration factors was changed in V05 released on May 2017, and TRMM/PR's calibration factors was also changed in TRMM/PR-L1 V8 (GPM TRMM V05) L1 released on Oct. 2017.
- Better continuity was realized in the TRMM/PR-L2 V8 (GPM TRMM V06) and GPM/DPR-L2 V06 released in Oct. 2018, by using common precipitation estimation algorithms between the TRMM/PR and the GPM/KuPR.

\rightarrow These dataset was used long-term precipitation analyses.

Takahashi, H.G., Fujinami, H. Recent decadal enhancement of Meiyu– Baiu heavy rainfall over East Asia. *Sci. Rep.* 11, 13665 (2021). <u>https://doi.org/10.1038/s41598-021-93006-0</u> <u>https://earth.jaxa.jp/en/earthview/2021/08/02/5584/index.html</u> Takahashi and Fujinami (2021) showed recent decadal enhancement of Meiyu-Baiu heavy rainfall over the East Asia using the TRMM/PR & GPM/DPR dataset.

/TRM

GPM/

AMSR-E/AMSR2 Cross-Calibration for Continuous Dataset

GCOM-W /AMSR2

- AMSR-E made observation in slow rotation (2rpm) mode from Dec. 2012 to Dec. 2015 in the same observation conditions to AMSR2
 - Procedure
 - Match-up AMSR-E and AMSR2 Tbs at same location
 - Calculate linear expression to transfer AMSR2 Tb to AMSR-E equivalent Tb by making scatter plots for Asc. and/or Dsc. orbits using Double Difference

Frequency [GHz]	Ascending		Descending		Ascending + Descending	
(H/V)	Slope	Intercept	Slope	Intercept	Slope	Intercept
6.9 (V)	-0.01395	3.75442	-0.01357	3.52119	-0.0139	3.67421
6.9 (H)	-0.00966	3.10936	-0.00906	2.94066	-0.0094	3.03663
10.65 (V)	-0.01267	6.44474	-0.01255	6.11618	-0.01289	6.34775
10.65 (H)	-0.00189	3.85311	-0.00227	3.69259	-0.00221	3.79624
18.7 (V)	-0.04571	12.77339	-0.04435	12.27115	-0.04524	12.57562
18.7 (H)	-0.00735	1.90245	-0.00925	1.78223	-0.00858	1.89574
23.8 (V	-0.01179	4.86124	-0.00745	3.97509	-0.00957	4.40435
23.8 (H)	-0.00927	4.29221	-0.0093	3.99323	-0.00947	4.1871
36.5 (V)	-0.01107	5.66375	-0.00928	5.31924	-0.01019	5.49799
36.5 (H)	-0.00568	4.24643	-0.00534	4.08753	-0.00561	4.19181
89 (B) (V)	-0.01597	5.86118	-0.0113	4.57687	-0.01403	5.32379
89 (B) (H)	-0.01134	4.0913	-0.00807	3.36449	-0.0098	3.75174

Monitoring of Extreme Heavy Rainfall and Drought based upon 21-yr Statistics of the GSMaP Precipitation Data

- JAXA has developed the Global Satellite Mapping of Precipitation (GSMaP) in the Global Precipitation Measurement (GPM) mission (Kubota et al. 2020, <u>https://doi.org/10.1007/978-3-030-24568-9_20</u>).
- "JAXA Climate Rainfall Watch", which provides information about extreme heavy rainfall and drought over the world, is now available.
 - Calculated based upon 21-yr statistics with Standardized Precipitation Index (SPI) (Tashima et al. 2020, <u>https://doi.org/10.1109/JSTARS.2020.3014881</u>)

Monthly Rainfall by GSMaP in Dec. 2019

Drought index in Dec. 2019

GPM/DPR

GCOM-W

AMSR2

AMSR3 on GOSAT-GW: Global Observation SATellite for Greenhouse gases and Water cycle

- GOSAT-GW will carry two instruments, AMSR3 & TANSO-3.
 - AMSR3, led by JAXA, will succeed AMSR series observations adding new high-frequency channels for solid precipitation retrievals and water vapor analysis in NWP.
 - TANSO-3, led by Japanese Ministry of the Environment (MOE) and National Institute of — Environment Studies (NIES), will improve observation capability of greenhouse gases from GOSAT-2/TANSO-2.
 - Target launch is JFY2023 (Apr. 2023 Mar. 2024)

GOSAT-GW Satellite Specifications					
	Туре	Sun-synchronous, Sub-recurrent orbit			
Orbit	Altitude	666km, recurrent cycle 3days (same as GOSAT)			
	MLTAN	13:30±15min (same as GCOM-W)			
Mass		2.6 ton (Including propellant)			
Power		> 5.3 kW			
Design life		> 7 years			
Launch vehicle		H-IIA rocket			
Mission data downlink rate		Direct transmission with X-band: 400 Mbps Direct transmission with S-band: 1 Mbps (Only for AMSR3)			
Instrument		TANSO-3 (for GHG) AMSR3 (for Water Cycle)			

COCAT CIAL Catallita Crasification

AMSR3 Channel Sets

Center frequency [GHz]	Polarizatio n	Band width [MHz]	NEDT (1σ)	Beam width (spatial resolution)				
6.925 7.3	H/V	350	< 0.34 K	1.8 [°] (34km x 58km)				
10.25	H/V	500	< 0.34 K	1.2 [°] (22km x 39km)				
10.65	H/V	100	< 0.70 K	1.2 [°] (22km x 39km)				
18.7	H/V	200	< 0.70 K	0.65 [°] (12km x 21km)				
23.8	H/V	400	< 0.60 K	0.75 [°] (14km x 24km)				
36.42	H/V	840*	< 0.70 K	0.35 [°] (7km x 11km)				
89.0 A/B	H/V	3000	< 1.20 K	0.15 [°] (3km x 5km)				
165.5	v	4000	< 1.50 K	AZ=0.23°/EL=0.30° (4km x 9km)				
183.31±7	V	2000 × 2	< 1.50 K	AZ=0.23° / EL=0.27° (4km x 8km)				
183.31±3	v	2000 × 2	< 1.50 K	AZ=0.23° / EL=0.27° (4km x 8km)				

Red: Changes from AMSR2 including additional CHs

* Changed the specification of Ka-band passband to reduce the future risk of RF interference from 5-G mobile communication system

Actions for Radio Frequency Interference (RFI) in AMSR Series

RFI in C-band in AMSR-E

Addition of 7.3GHz channels

RFI in C-band in AMSR2

175 200 225 250 275

Addition of 10.25GHz channels

Modification of 36GHz bandwidth

- In AMSR3, JAXA modifies sensor characteristics to mitigate possible RFI impacts.
- C-band:
 - Keep both 6.9/7.3GHz
- X-band:
 - Add new 10.25GHz as well as 10.65 GHz
 - JAXA plans to introduce similar method to detect RFI used in C-band
- K-band:
 - For 36GHz, specification of 36GHz passband is changed to 840MHz to reduce the future risk of RFI from 5G mobile communication system
 - For 23GHz, there will be buffer band of 250MHz and its impact will be negligible by improving the out-of-band frequency characteristic

Cloud Profiling Radar with Doppler capability in EarthCARE mission

- The Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) jointly with ESA observes clouds, aerosols, and radiation on a global scale to improve the accuracy of climate change predictions.
 - $\checkmark\,$ planned to be launched in JFY2023.

thCAR

- JAXA and NICT are developing Cloud Profiling Radar (CPR) with doppler capability.
 - ✓ It will be the world's first spaceborne W-band (94GHz) radar with doppler capability.
- The CPR will provide observations of not only cloud but also snowfall and light rainfall.

JAXA's Next-generation Precipitation Radar Project status (1)

- The JAXA has studied a feasibility of a next generation precipitation radar, and the Mission Definition Review (MDR) for the next generation Precipitation Radar satellite was completed in August 2021.
 - JAXA has participated in NASA's Aerosol, Could, Convection and Precipitation (ACCP) Pre-Phase A activities.
- Our targets for the next generation precipitation radar will be Doppler Observations, Higher sensitivity measurements with scanning capability.
 - In January 2022, Precipitation Measuring Mission (PMM) Pre-Project Team was established on for the JAXA Spacecraft carrying the Ku-band Doppler Precipitation Radar.

JAXA's Next-generation Precipitation Radar Project status (2)

Expected precipitation radar technical characteristics in the JAXA's feasibility study

Improvements of the sensitivity in the JAXA's Next-generation **Precipitation Radar**

- Sensitivity of the GPM/KuPR and next generation Ku-band Radar at nadir are compared each other by the Japanese satellite simulator (Joint-Simulator) and the global cloud resolving model (NICAM).
- The sensitivity of the new JAXA Ku-band Doppler Radar is significantly improved from current GPM/KuPR sensitivity.

Simulation results of at-nadir observations by Joint-simulator and NICAM data

>3.37 dBZ

- JAXA has long history and big heritage of satellite-based water-related observations by both passive and active microwave sensors to produce continuous and consistent long-term datasets.
- Passive microwave sensor
 - Since 2002 to present, AMSR series with large-sized antenna and C-band frequency channels contributes largely to water cycle observations, including GSMaP merged rainfall products.
 - Future AMSR3 on board the GOSAT-GW to be launched in JFY2023 will have additional channels including high-frequency channels for snowfall retrievals and 10.25 GHz for RFI mitigations.
- Active microwave sensor
 - Since 1997 to present, TRMM/PR and GPM/DPR are only reliable references to passive microwave radiometers for precipitation observation. The CPR with doppler capability in the EarthCARE is planned to be launched in JFY2023.
 - The JAXA has studied a feasibility of a next generation precipitation radar, and the MDR for the next generation Precipitation Radar satellite was completed in August 2021.
 - JAXA has participated in NASA's Aerosol, Could, Convection and Precipitation (ACCP) Pre-Phase A activities.