

MICROWAVE REMOTE SENSING: QUANTITATIVE TECHNIQUES AND DEVELOPMENT IN CHINA

Xiaolong DONG

CAS Key Laboratory of Microwave Remote Sensing (MiRS) National Space Science Center (NSSC) Chinese Academy of Sciences (CAS)

GSICS Microwave Subgroup Meeting, March 1, 2022

Outline

- Early Developments
- Development for atmospheric and ocean applications
- Development for future missions
- Summary

NSSC

(National Space Science Center, Chinese Academy of Sciences)

- Founded in 1958, initiated 1st satellite project in China (DFH-1, 1970)
- Key role in China's space program:
 - Manned space mission, oceanic/meteorological satellite, lunar exploration
 - > Payloads, data processing and scientific applications
 - Space physics & space weather, spacecraft electronics, space environment monitoring and detection & microwave remote sensing
- Planning, management, development and operation of space science satellite programs
 - Space-based astronomy and astrophysics;
 - Solar and space physics;
 - Planetary science;
 - Microgravity science and astrobiology;
 - Earth science from space.

MiRS

(CAS Key Laboratory of Microwave Remote Sensing)

- → R & D department of NSSC
- → Founded in 1958, as electronics group contributing to the development of China's 1st satellite (DFH-1) in early 1970s.
- **♦ NMRS** developed the telemetry receiver for DFH-1.
- From 1973, focuses turned to microwave remote sensing technology
- ♦ 1984, the 1st laboratory for microwave remote sensing in China
- Significant contributions for China's main space programs with microwaves:
 - > Manned space flight
 - Lunar exploration
 - Oceanography
 - Meteorology...

Research & development priorities:

- Development of microwave remote sensing
 - microwave radiometry,
 - · radar altimetry,
 - radar scatterometry
- Calibration and validation, information techniques and science with microwave remote sensing.
 - Calibration/validation
 - Geophysical parameter retrieval
 - Science applications: earth science and global change

Contribution to China's space program with microwave

- SZ-4 (unmanned spaceship, 2002): M3RS (ALT+SCAT+RAD)
- > FY-3 (2008,2010,2013): MWHS (90, 118, 150, 183GHz)
- > CE-1/2 (2007,2010): MWS (3.0,7.8, 19.35, 37GHz)
- HY-2A~D (2011, 2018, 2020, 2021): DFRA (Ku+C ALT), ACMR (tri-freq RAD), SCAT (Ku-RPSCAT)
- > TG-2 (2016): Wide-Swath Radar Altimeter
- > RFSCAT (2018): SCAT (Ku-RFSCAT)

Early Developments

- Research and development of microwave remote sensing in China, started in early 1980's.
- First spaceborne microwave remote sensing mission:
 - Multi-Mode Microwave Remote Sensor (M3RS): flown on SZ-4 Unmanned Space Flight mission
 - Development started in early 1990's
 - Launched on December 31, 2002

M3RS: Multimode Microwave Remote Sensors on SZ-4 Space mission (2002)

Ku-band (13.9GHz) ALT+SCAT, 5-band Microwave radiometer (6.6-37GHz) China's 1st MW Remote Sensing Experiment in Space

Technology test & verification for oceanography and meteorology microwave sensors

Ocean surface brightness temperature, significant wave height and wind

vector

6.6GHz-H Channel

23.7GHz-V Channel

37GHz-V Channel

国家卫星海洋应用中心 国家海洋局三所 2003年1月8日

CEMWS: Microwave Sounders for Chang-E 1 & 2 Lunar Satellites (2007, 2010)

Lunar surface regolith sounding by penetration difference (3.0, 7.8, 19.35, 37GHz)

Microwave Moon (MicM):1st global lunar microwave mapping from lunar orbiter; 1st microwave BT mapping of remote side Significant discoveries for polar regions

MWHS: Microwave Humidity Sounders on FY-3 Meteorological Satellites (2008, 2010, 2013, 2016, 2021)

FY-3A & B: 150GHz (H&V-pol), 183GHz (3-channels)

FY-3C~: 90GHz,118GHz,150GHz,183GHz (15-channels)

1st short MMW space applications in China

1st 118GHz down-looking radiometers in space internationally

Improved vertical resolution and capability for upper troposphere

Data integrated into ECMWF operational system from September 24, 2014

1st Typhoon vapor vertical structure by FY-3A MWHS (Funghuang, July 2008, 15km resolution)

HY-2 Oceanic satellite

DFRA: dual frequency radar altimeter: Ku (13.58GHz) & C (5.25GHz)

ACMR: atmospheric correction microwave radiometer: 18.7, 23.8, 37GHz

SCAT: radar scatterometer: Ku-band (RF switch network & receiver)

Instrument performance better than Jason-1/2, data quality equivalent to

Jason-1/2 and Envisat

HY-2A/B

Payloads/Instruments

- DFRA: Dual-frequency (Ku, C)
 radar altimeter and a 3channel calibration
 radiometer;
- SCAT: Scanning radar scatterometer (Ku-band, 13.256GHz);
- MWRI: Multiple-channel microwave imager (6.6-37GHz)
- ACMR: Tri-frequency nadir looking microwave radiometer (19.35/23.8/37GHz)

HY-2C/D

Payloads/Instruments

- DFRA: Dual-frequency (Ku, C) radar altimeter and a 3channel calibration radiometer;
- SCAT: Scanning radar scatterometer (Ku-band, 13.256GHz);
- ACMR: Tri-frequency nadir looking microwave radiometer (19.35/23.8/37GHz)

HY-2A products (1 orbit)

HY-2A SSL assessment

The Sea Surface Height(SSH) distribution retrieve from altimeter between HY-2A and JASON-2 satellite (Unit: m)

CNES assessment:

The SSH products of HY-2A have been successfully ingested in the **DUACS** test systems and multi-altimeter maps for a few months now. The quality is stable and very good.

The HY-2A results on IGDRs products are very good and close to the one from JASON-2.

HY-2A OSVW assessment

The NDBC buoys observations are used to validate HY2A-SCAT wind vectors. The RMS error of wind speed and wind direction are 1.051 m/s and 16.122° respectively for the whole year of 2012.

For Wind Production Application:

- 1. **ECMWF** is running a HY-2 assimilation experiment, the results is good quality and hope receive HY-2A NRT data;
- 2.**KNMI** has run OSEs with HY-2A test. The HY-2A wind assess its impact for the mesoscale model;
- 3.Meteo France, UK Met Office and Deutsche Wetter Dienst (Germany) to be contribute to the qualification and the validation of HY-2A wind measurements for assimilation purpose. There are more related interests on HY-2A data assimilation on the world.

Oct 27, 2012, simultaneous observation of Hurricane Sandy by HY-2A SCAT for wind and ALT for SWH

SSL, SWH measurement

HY-2A Altimeter: Monitoring of 2015-2016 El Niño

NSSC CFOSAT (China-France Oceanography Satellite)

Global ocean surface wind vector and directional wave spectrum

Observation requirements

►SWIM measurements and requirements

Directional wave spectra at a scale of 70 x 90 km

Wavelength range 70m-500m

10% accuracy on wavelength, 15° accuracy on direction

Significant wave height and wind speed along-track

10% on SWH (or 50 cm whichever is better) rms <2 m/s on wind speed

Normalized radar cross-section from 0° to 10° Absolute accuracy of ± 1 dB Relative accuracy between incidences \pm 0.1 dB

▶ SCAT measurements and requirements

Wind vector

50 km resolution cell (25 km experimental)

accuracy: 2m/s rms @5~24m/s, 20° wind direction

Backscattering coefficient: ± 0,5dB

SWIM (France):

Wave scatterometer

- -radar 13.6 GHz,
- -single polarization (linear),
- -low incidence angle multi-beams (0- 10°),
- -scanning in azimuth (360°),
- -high range resolution,
- -real aperture (no SAR processing)

SCAT (China):

Wind scatterometer

- -radar 13.256 GHz,
- -Dual polarisation (HH, VV),
- –« fan beam » geometry,
- -medium incidence angles (20-50°),
- -scanning in azimuth (360°),

SCAT: a rotating fun-beam scatterometer for CFOSAT

(2018, in development)

CFOSAT: China-France Oceanography Satelite

2 Payloads: SWIM (CNES/Thales), SCAT (CNSA/NSSC)

Global ocean surface wind vector and directional wave spectrum

SCAT: 1st RFSCAT (better wind retrieval by multiple looking-angles)

SCAT instrument

- > On-board digital processing
- > Fan-beam antenna with 26-46° incidence
- ➤ Rotating antenna at 3.4 rotations/min

Nese Calibration and Noise Signals

- Steady calibration signals show that both the transmitter and the receiver of the scatterometer work properly.
- The internal calibration signal change slightly with the environment temperature.

Nese Calibration and Noise Signals

- > The internal noise is stable, because the internal noise source is from a matched load inside the temperature-controlled cabinet of the satellite
- The external noise energy changes with the land-sea alternating and variation of surface emission

NSSE CFOSAT SCAT Calibration Flow

NSSE CFOSAT SCAT Ground Station Calibration

CFOSAT SCAT Ground Station Calibrations were carried out at Inner Mongolian from 6th June to 2nd July.

1 Transponder and 3 Passive receivers calibrate at

the same time

CFOSAT SCAT Ground Station Calibration

Transponder Location [49.259386,118.096787]deg

Geolocation Errors Evaluation

Geolocation errors is about 6.48km, root mean square error is about 7.25km;

CFOSAT SCAT Sigma0

Amazon rainforest Sigma0 Validation

- Measurement noise: by monitoring the width of the sigma0 histogram.
- Azimuth response of sigma0: by monitoring the sigma0 in azimuth angle.

The selected zone for HY-2 and CFOSAT scatterometers

[Kunz and Long, 2005]

- Long-term stability of sigma0
- Computed on 10km*12.5km slices

CFOSAT SCAT Wind Products

CFOSAT SCAT Wind Products

2019年第10号台风"罗莎"

(20190806T09:24:02 UTC -- 20190806T09:35:46 UTC)

台风眼时间: 20190806T09:30:01

台风眼位置: 142° 23′ 23″ E

18° 33′ 33″ N

十级风半径: NaN NaN

(KM) NaN NaN

七级风半径: 499 337 (KM) 308 459

最大风速值: 17.7 (m/s)

坐标系: CGCS2000

比例尺: 1: 22,138,000

卫星名称: CFOSAT

传 感 器: 微波散射计

轨 道号: 4261

Follow-on (next generation, Payload upgrade

HY-2

- Radar altimeter: swath and precision
 - Wide Swath Interferometric Radar Altimeter
 - Nadir-looking Synthetic Aperture Radar Altimeter
- Radar Scatterometer: high wind and all-weather
 - Ku-C dual frequency polarized scatterometer
- Radiometric Imager:
 - Full-polarimetric microwave imager

CFOSAT== wind and wave missions

- Radar scatterometer: ocean current capability
 - Doppler scatterometer
 - Ku-Ka dual-frequency for higher resolutions

NSSC Tiangong-2 Interferometric Imaging Radar Altimeter

Interferometric Imaging Radar Altimeter (InIRA)

- ➤ Ku-band (13.58GHz) wide swath inteferometric radaer altimeter
- Flown on Chinese Tiangong-2 space laboratory
- Launched on September 15, 2016

Objectives:

- wide-swath sea surface height at mesoscale and submesoscale, sea waves and sea winds.
- ➤ Inland waters, e.g., lakes and rivers, coasts.

HY-2 Follow-On Pathfinder Mission

Parameters of Tiangong-2 InIRA				
Frequency	Ku band			
Bandwidth	40MHz			
Range resolution	200m~30m			
Azimuth resolution	30m			
Swath	30-35km			
Orbit error	20cm			
Vertical accuracy of sea surface	20cm absolute vertical accuracy in a 5km × 5km raster			
Vertical accuracy of land surface	1~5m absolute vertical accuracy in a 200m × 200m raster			
Accuracy of wave direction	15°			

Tiangong-2 InIRA Image: Pacific Ocean

Tiangong-2 InIRA Image: Inland river

Tiangong-2 InIRA Image: Rain cells

Tiangong-2 InIRA Image: Sea surface topography (spatial resolution 2km × 2km)

Wave Spectrum by InIRA

Wide-Swath Radar Altimeter for HY-2 Follow-On Missions

Future plan and Progresses:

- The next-generation ocean dynamic environment mission satellite (HY-2 FO) is under development;
- Payload technology verification started in 2017 and scheduled for launch in 2021 ~ 2022;
- The interferometric imaging radar altimeter onboard will operate on near-nadir swaths on both sides of the satellite track with imaging swath ~ 200km.
- The accuracy of sea surface level is ~5cm at spatial resolution of 5km x 5km, with high precision orbit determination (from HY-2)

Chinese Ocean Salinity Mission

Interferometric Microwave Radiometer for Chinese Ocean Salinity Mission

L-band: Ocean salinity

C, K band: SST and

roughness

MICAP:

Microwave Imager Combined Active and Passive

Cross track distance (km)

- Instrument Type: a suit of active/passive instrument package
 - ➤ Passive part: L/C/K band one-dimensional
 - ➤ Active Part: L-band DBF (digital beamforming)

MICAP/SCAT

MICAP/RAD

Frequency	1.26GH z	
Trans. BW	4MHz	
Trans. Peak Power	≥200W	
PRF	100Hz	
Pulse Width	1ms	
Rec. BW	5MHz	
Calibration Stability	0.1dB	

Frequency	L-band (1.4GHz)	C-band (6.9GHz)	K-band (18.7GHz)		
Bandwidth	25MHz	200MHz	200MHz		
Polarisatio n	V/H/T3	V/H	V/H		
Spatial Resolution	AL-track: 75km X-track: 50-100km	AL-track: 15km X-track: 25- 50km	AL-track: 8km X-track: 25-50km		
NeDT	0.15K	0.5K	0.5K		
(boresigh	(75km sampling	(15km sampling	(15km sampling		
t)	interval)	interval)	interval)		
Stability	0.12K@3天	/	/		
Swath	≥ 950km	≥ 950km	≥ 950km		

Advanced Microwave Atmospheric Sounder (AMAS) for FY-3 Follow-ons

- FY-3 (Fengyun, Wind and Cloud): China's polar orbit meteorological satellites
- **■** Future FY-3 Microwave sounder requirements
 - Integrated temperature and humidity sounding
 - Enhanced cloud ice capability
 - > Enhanced vertical resolutions
- Microwave Radiometer for micro/cubesats

Nese Microwave sounder for FY-3 Follow-on

Ch No.	Center Freq(GHz)	pol	BW (MHz)	NEDT (K)	3dB Beam Width	Spectral no.
1	23.8	V	100-400	0.2	5.2 °	1
2	31.4	V	1000	0.2	5.2°	1
3	50~60GHz (spectrometer)	н	2-2000MHz programmable	0.4@ 200MHz	2.2°	Digital spectrometer
4	89.0	V	1500	0.3	2.2°	1
5	118GHz (spectrometer)	V	2-2000MHz	0.3@ 500MHz	2.2°	~20
6	166	Н	1500	0.3	1.1 °	1
7	183GHz	Н	2-2000MHz	0.3@ 500MHz	1.1 °	~10
8	229GHz	Н	1500	0.3	1.1 °	1

NSSE

Nese Microwave sounder for cubesats

Ch No.	Center Freq(GHz)	pol	BW (MHz)	Range (K)	NEDT (K)
1	89.0	Н	1500	3-340	0.5
2	118.75±0.08 (30)	Н	60	3-340	2.5
3	118.75±0.2 (60)	Н	100	3-340	1.5
4	118.75±0.4(100)	H	<mark>200</mark>	3-340	1.0
5	118.75±0.8(180)	Н	200	3-340	1.0
6	118.75±1.1(220)	Н	300	3-340	1.0
7	118.75±1.6(300)	Н	300	3-340	1.0
8	118.75±2.1 (380)	H	300	3-340	1.0
9	118.75±3.0 (490)	Н	300	3-340	1.0
10	118.75±3.6(600)	H	<mark>500</mark>	3-340	<mark>0.8</mark>
11	118.75±4.3(700)	H	<mark>500</mark>	3-340	<mark>8.0</mark>
12	118.75±4.9(800)	Н	<mark>500</mark>	3-340	<mark>0.8</mark>
13	166.0	V	1500	3-340	0.8
14	183.31±1	V	500	3-340	1.0
15	183.31±1.8	V	1000	3-340	8.0
16	183.31±3	V	1000	3-340	8.0
17	183.31 \pm 4.5	V	1500	3-340	0.8
18	183.31±7	V	1500	3-340	8.0

Summary

- Started from M3RS/SZ-4 in 2002;
- Focus on atmospheric/meteorological and oceanographic applications
- Support the development of FY-3 series, HY-2 series, CFOSAT, COSM...
- Preparation for next generation started

