GSICS Microwave Subgroup Workshop

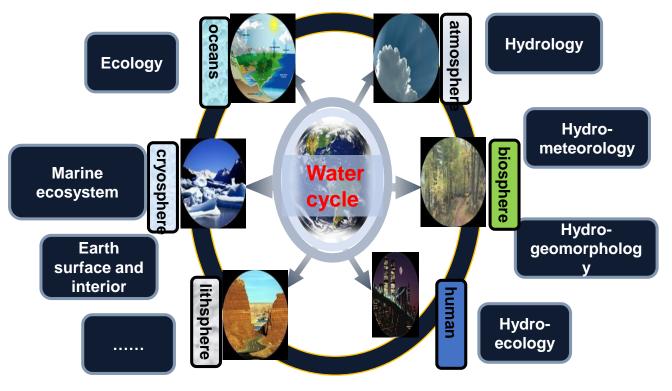
Satellite Observations for Global Water Cycle

Jiancheng Shi

National Space Science Center, Chinese Academy of Sciences

Feb. 28-March 2, 2022

1. Science and Application Importance


Water cycle is the one of natural key processes of Earth System, that links the most of atmospheric, surface, hydrological, and eco-system processes. <u>Understanding water</u> <u>cycle</u> from an integrated Earth-system perspective is a frontier research issue. Monitoring, understanding, and predicting their changes are critical to science, application, and society benefits.

Science Questions:

1) Characteristics of spatio-temporal distributions and their change at global and regional scales?

2) Water Cycle-Climate feedbacks ?

3) Water cycle acceleration at regional to global scales?

1. Project on Satellite Constellations of Water Cycle for Global Change (2021-2025)

Goal: Establish the global water cycle observatory (**GWCO**) to advance our understanding of water cycle changes, its consequences and impacts on applications and social benefits

International co-operation is an important function: establish an international infrastructure of observing system and analysis capacity with world experts, research groups and agencies

Technical Approach: build satellite based global water cycle observatory (GWCO) using current and future Chinese and International satellites, not only the parameters but also the water cycle system measurements

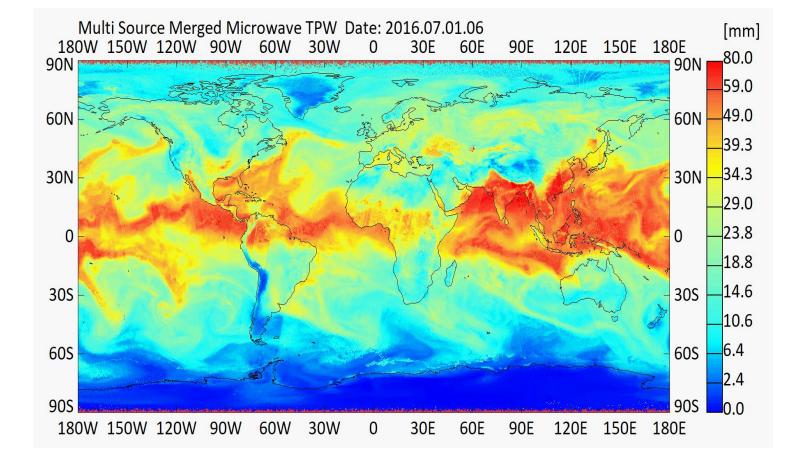
- **1. National Satellite Meteorological Center**
- 2. National Satellite Ocean Application Service
- 3. National Space Science Center, CAS
- 4. State Key Laboratory of Remote Sensing Science, CAS/MOST

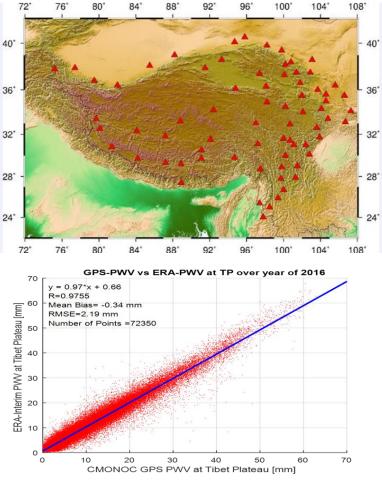
Characteristics of the Spatial-Temporal Distribution of Water Cycle Components Hydro-climatology 50-100km, Hydro-meteorology 4-15km resolution

	Water Cycle	Temporal Resolution	Ideal Spatial Resolution	Minimum Requirement	Obs, Error
Strong Variability in Time:	Precip./vapor	1-2hour	1km	25km	1 mm hr-1
Precip./vapor	Sea Evap.	1-2hour	10km	25km	15 W m-2
 Ocean Evaporation 	Soil moisture	2-3day	100m-1km	50km	0.04 m ³ /m ³
Strong Variability in	Sea salinity	6-10day	30km	100km	0.1-0.2 psu
Space:	FT	2-3day	100m-1km	50km	10-20 %
•Freeze/Thaw	SWE	2-3day	100m-1km	50km	10 %
•SWE •Soil Moisture	Water body	3-7day	30m	1km	1000 m2
Weak Variability :	Underground water	1month	50km	300km	~
•Sea salinity	Land ET	1-2hour	30m-1km	5km	30 W m-2
•Polar Ice	runoff	1-2hour	~	~	~

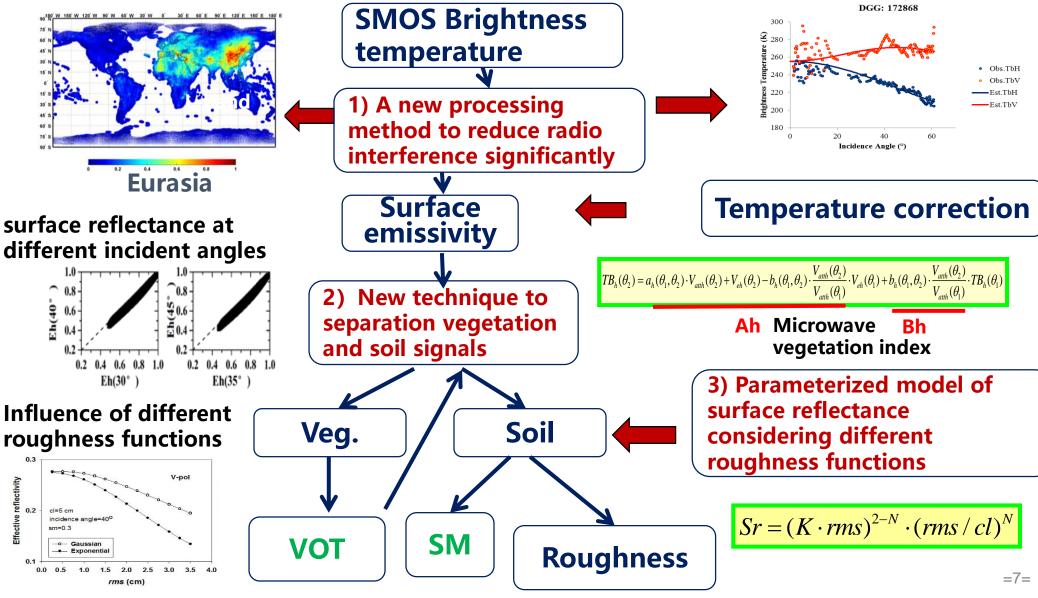
The global observation capability of China microwave missions in polar and inclined orbits, including dual frequency precipitation radar, can obtain observational data globally with 3-5 hours. With international available satellites, temporal precipitation data can achieve at 2-3 hours.

		China						Intern	ational		
FY-3D MWRI	FY-3F MWRI	FY-3G MWRI	FY-3R MWRI	FY-3R PR			GPM GMI			GPM DPR	
10-89GHz	10- 118GHz	10- 118GHz	10- 183GHz	13/36GHz			10-183GHz 2014-			13/36GHz 2014-	
2017-	2021-	2023-	2022-	2022-				Other I	Missions		
	Marine mission				v	OM- V1	DMSP- F16	DMSP- F17	DMSP- F18	DMSP- F19	Coriolis WindSat
HY-2	B	HY-2E		HY-2G	AM	ISR2	SSMIS	SSMIS	SSMIS	SSMIS	
6-36GI		6-36GHz	2	6-89GHz	6-89	9GHz	19- 183GHz	19- 183GHz	19- 183GHz	19- 183GHz	6-37GHz
2018	-	2021-		2023-	20	12-	2003-	2006-	2009-	2014-	2003-

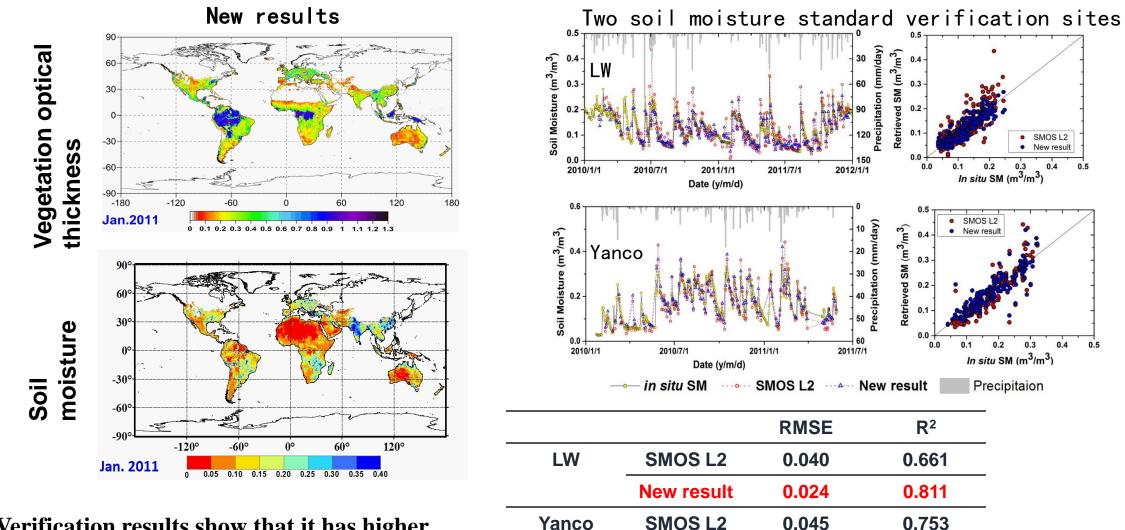

But algorithms need to be improved. Combining with Geostationary orbit Infrared sounders to improve temporal resolution (10-30 min), but accuracy is less than microwave.



Precipition


Water Vapor

Merged Microwave Water Vapor Product (3h) Validation with GPS observations



Improved algorithm 07 0.6 07 0.4 Eh(30°

Soil Miosture

L-band SMOS

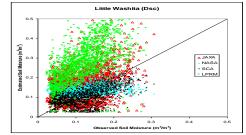
Yanco

New result

0.045

0.038

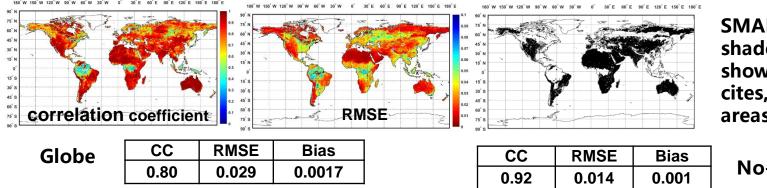
0.753


0.760

Verification results show that it has higher accuracy of soil moisture estimation than SMOS **Soil Miosture**

SMOS

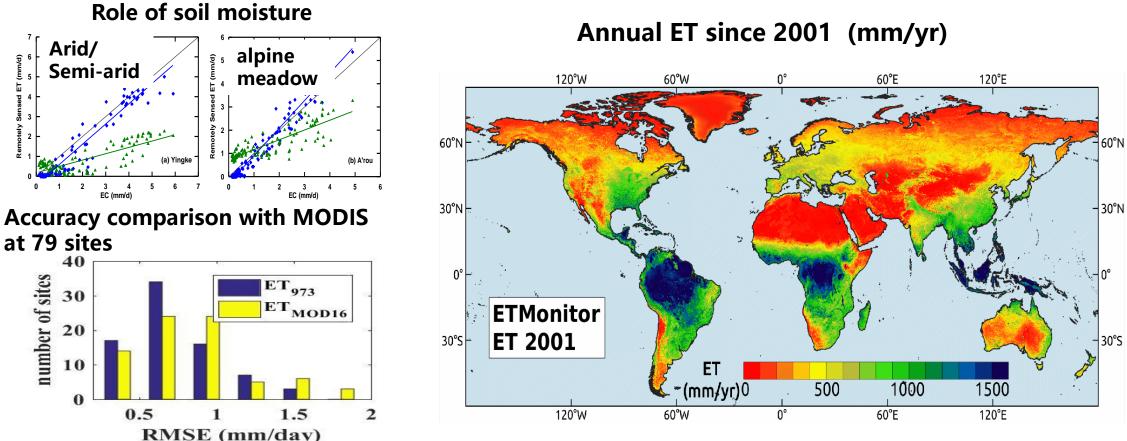
Problem: Current & Historical data (C-and X-band) cannot meet the accuracy needs of water cycle and global change studies.


LW station calibration based on 7-yr data and 4algorithms

Soil Miosture

C-X bands

Eg., SMOS/SMAP L-band retrieval of soil moisture and AI are used to develop algorithms of AMRS (C- and X-band) and FY-3 (X-band). Results show the accuracy of AI with similar as L-band instrument, especially in non-forest areas.

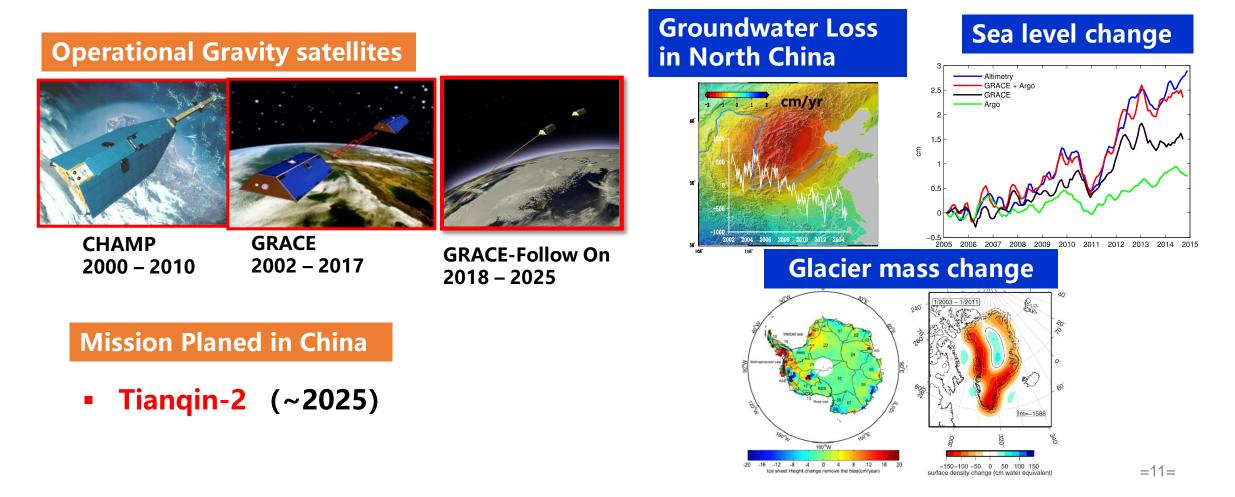


SMAP meet accuracy (4%) at shaded areas, while retrieval shows problem at forests, cites, polar and water cover areas.

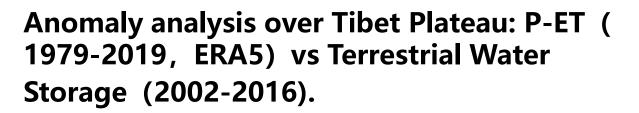
No-forest Regions

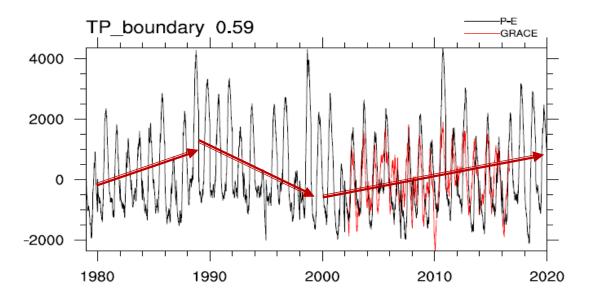
Producing the better SM products for 2002-currents: Al and machine learning offer great opportunities throughout historical longer-time series SM data.

ET-Monitor is mainly driven by remote sensing observations (Jia et al.)

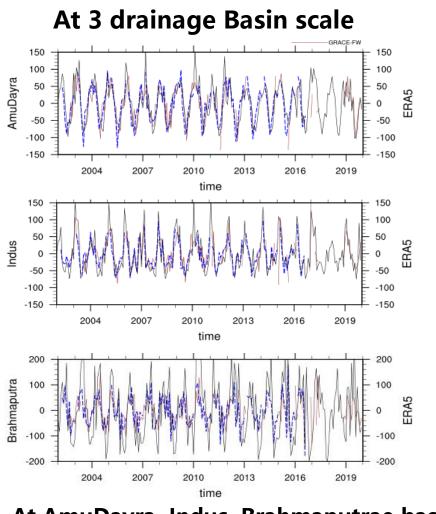

The global ET product at 1km and daily scale since 2001.

Evapotran


spiration


Water Storage

Water storage is one of the 4 water balance components. Gravity satellites have made many achievements in the detection of changes in water storage, groundwater, glacier melting, sea level changes.



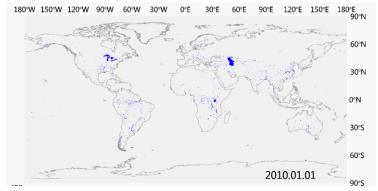
2. An Example in Water Balance Study

Results: 1) TWS has Strong annual and seasonal variabilities, at similar level as P-ET; 2) Important observation on water balance studies and supporting integrated surfaceground water assimilations.

At AmuDayra, Indus, Brahmaputrae basins, CC are 0.83, 0.87, 0.69, respectively

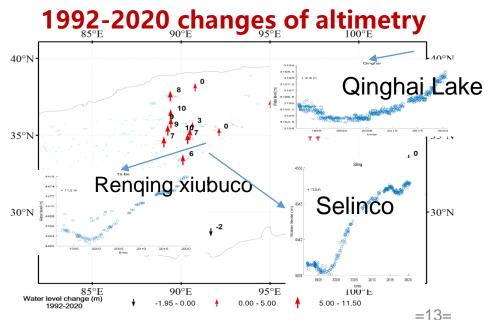
Water

Storage



Complete the analysis of water observation capacity and data products from China and international optical satellites

Many optics have been used to observe the water bodies

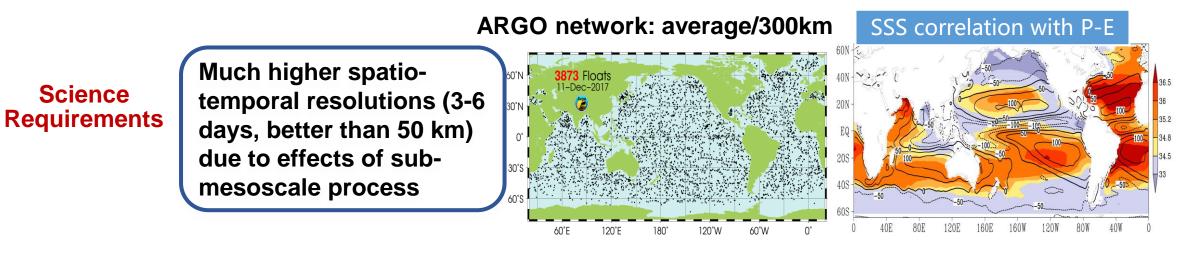

Satellite Type	Satellite sensors characteristics	Water and water quality monitoring applications	Typical domestic satellite remote sensor	Typical foreign satellite remote sensor
Landsat satellites	high spatial resolution, multispectral	Monitoring of small water body	GF1-PMS, GF2-PMS, GF6- PMS	Worldview2/3, SPOT6/7
Landsat satellites	wide swath, multispectral	The dynamic monitoring of small and medium-sized water	GF1-WFV, GF6-WFV	Sentinel2, Landsat8
Landsat satellites	hyperspectral	High precision monitoring of small and medium-sized water	ZY1E-AHSI	PRISIMA, DESIS
Sea-Viewing Satellites	wide swath, multispectral	The dynamic monitoring of large lake library	HY1C-COCTS	MODIS, VIIRS, OLCI

2013 daily water bodies dynamics

Available altimetry satellites

Satellite	Launch Institutions	Launch Date	Mission Status	Altitude (km)	Inclination (°)	Repeat Cycles (day)	Frequency	Product Types
CryoSat-2	ESA	2010	Ongoing	717	92	369	Ku	LRM, SAR,S ARIN
HY-2A	China	2011	Ongoing	971	98.5	14	Ku, C	LRM
SARAL	ISRO/CNES	2013	Ongoing	800	98.5	35	Ka	LRM
Jason-3	NASA/CNES	2016	Ongoing	1336	66	10	Ku, C	LRM
Sentinel-3A	ESA	2016	Ongoing	815	98.6	27	Ku, C	SAR
Sentinel-3B	ESA	2018	Ongoing	815	98.6	27	Ku, C	SAR
ICESat-2	NASA	2018	Ongoing	500	92	91	Laser	
HY-2B	China	2018	Ongoing	973	99.3	14	Ku, C	LRM
GF-7	China	2019	Ongoing	505	99	5	Laser	
HY-2C	China	2020	Ongoing	958	66	10	Ku, C	LRM
Sentinel-6A	ESA/NASA/ CNES	2020	Ongoing	1336	66	10	Ku, C	SAR

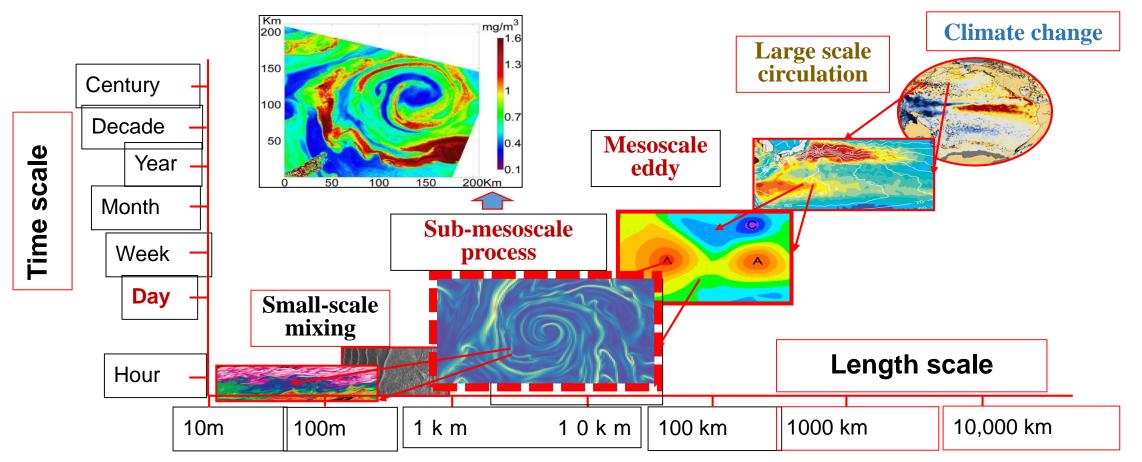
3. A Proposed Water Cycle Satellite Mission


- Approved mission by CNES and CNSA in Nov. 2019, but delayed. Looking for other opportunities (domestic and international)
- Objectives: high-resolution, high-precision and simultaneous observation of key elements of water cycle (soil moisture, ocean salinity, snow water equivalent, and soil freeze/thaw)
- **Technical Approach**: Two-Dimensional Synthetic-Aperture Radiometers (similar technique as SMOS)
 - ♦ Multi-frequency (L/X/Ka) and multi-angular (0°-60°) capabilities
 - Significantly improved sensitivity of the radiometer with one magnitude of order, and the spatial resolution is increased by 4-10 times (current microwave radiometers at 25-40 km)

Payload configuration and technical parameters					
Payload	Payload function	Current capability			
	1. Soil moisture	1.Soil moisture (10km, 0.04m³/m³)	1. 0.04-0.06m³/m³,25km-40km		
L band	2. ocean salinity	2.Ocean salinity (0.1ppm, 30km, 3-6 day)	2. 0.2 ppm, >1º, monthly		
X band	High resolution soil moisture for non- forest area, veg correction, LST, SST	 Soil moisture for non-forest area (2-3km, 0.04m³/m³) Background signal for SWE and change detection for F/T 	1. Missing km scale SM, SWE and FT		
Ka band	SWE, FT, LST, atmospheric correction for SSS	2-3km SWE and FT	2. SWE and FT (25 km)		

3. Advantages for Ocean Salinity

SMOS (2009) : target accuracy monthly 0.1-0.4psu/200km Aquarius (2015) : L-Band Active & Passive , target accuracy monthly 0.2psu/150km

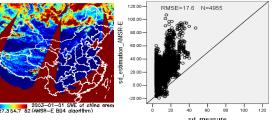


Payload	Function
L-Band	Initial 10km -> average to 30km and 3-6 day
X-Band	Sea surface temperature (SST) for sub-mesoscale water and heat fluxes and high resolution roughness averaged from 2-3km
Ka-Band	High resolution atmospheric correction

Current

3. Ocean multi-scale dynamic processes

Sub-mesoscale phenomena are widespread in the upper ocean, dominating more than 50% of the vertical flux of water, heat and carbon in the upper ocean

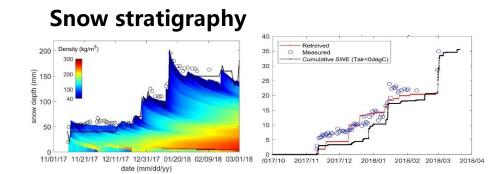

3. Advantages for Snow Water Equivalent

Current SWE: SSMIS、AMSR2、FY-3 **Status** Spatial res. 20~50km, low accuracy due to mixed pixels

Problems

Payload Strategy

Example of satellite retrieval of SWE and its validation



- Horizontal: need for high resolution – effect of surface inhomogeneity
- 2) Vertical: impact of snowpack structure, parameterization and background noise

Field Experiment

Payload	Function
L-band radiometer	Soil state, parameters and background noise under snow cover
X-band 2 – 3km	Providing background signal for brightness temperature difference; offering necessary condition for retrieving SWE
Ka-band 2 – 3km	Most suitable for retrieving SWE; possible for SWE retrieval using a combination of X- and Ka-bands

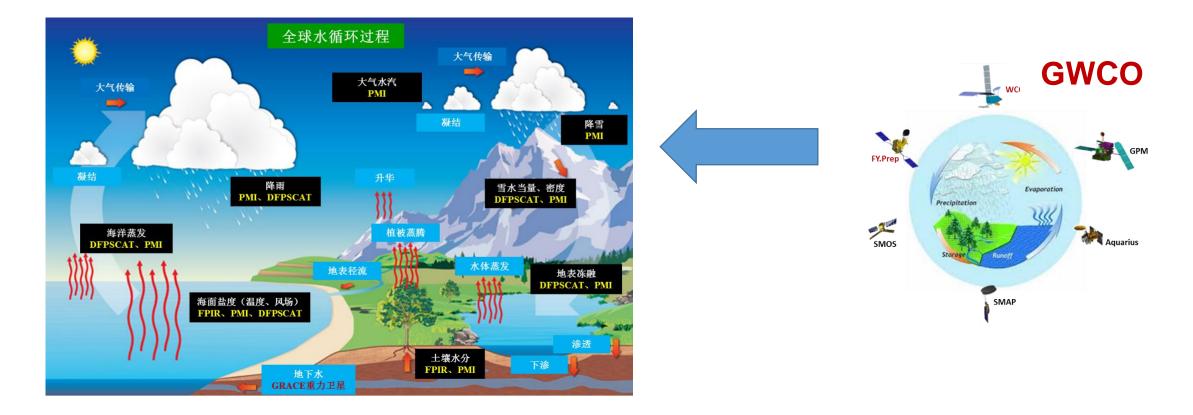
Inversion test

Single-layer: RMSE: 9.2 mm Multi-layer: RMSE: 2.7 mm

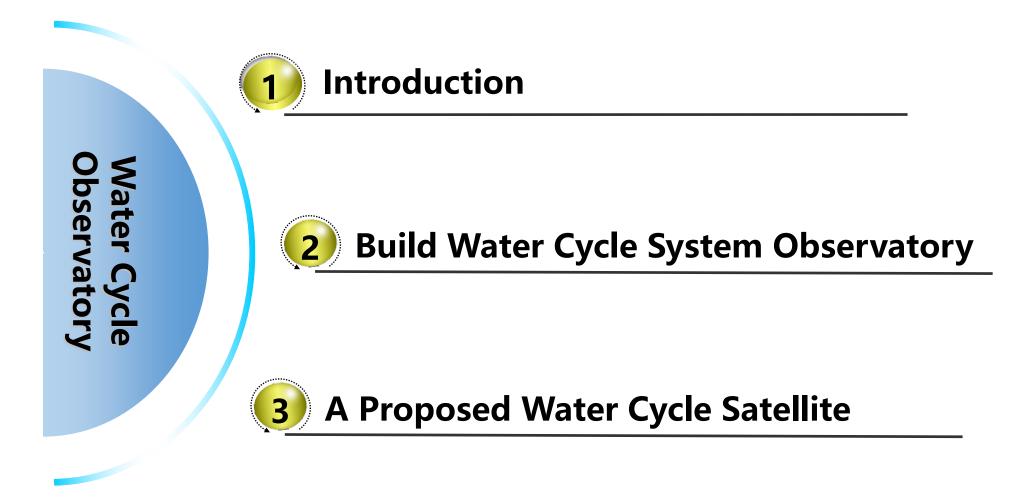
3. Advantages of Payload Design

Capable of measuring four target parameters simultaneously with optimal bands and correcting the impacts of different interfering factors for science & application break through

Parameter/Band	L-band	X-band	Ka-band
Sea Surface Salinity (SSS)	 Highly sensitive to sea salinity, highly accurate retrieval based on multi-angle observation Sea surface roughness Faraday rotation correction (T3) 	 Measuring sea surface roughness Measuring sea surface temperature 	1. Acquisition of cloud liquid water and water vapor for better atmospheric correction
Surface Soil Moisture (SSM)	 Highly sensitive to soil moisture variations Minimizing vegetation effects 	 Retrieval of soil moisture over non-forested areas Obtaining vegetation canopy characteristics 	1. Retrieval of land surface temperature
Snow Water Equivalent (SWE)	1. Acquisition of soil surface parameters under snow cover	1. Providing background signal for brightness temperature difference in order to retrieve SWE	 Best band for retrieving SWE Atmospheric calibration
Freeze/Thaw (F/T)	1. Impact of frozen layer thickness	1. Highly sensitive to phase transition water content in the freeze-thaw process	 Sensitive to temperature changes in the freeze- thaw process Atmospheric calibration
	Vital	Synergetic	Supporting


=18=

Summary


Global Water Cycle Observatory (GWCO) will establish capacity on monitoring of global water cycle system, not only on the specific parameters but also on the system. It will substantially advance understanding on the water cycle for global change studies and enhance the capacities for applications of UN SDGs.

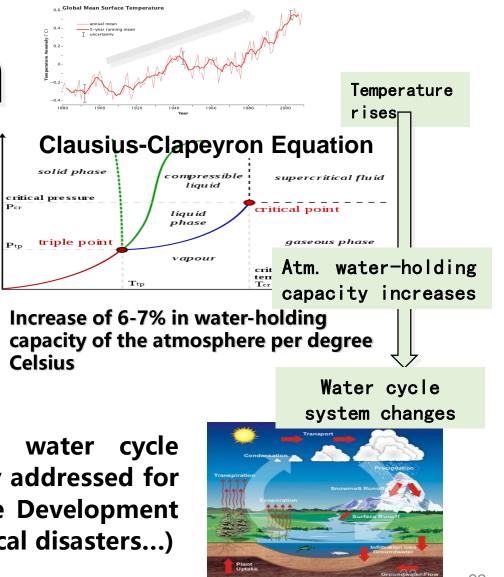
The GWCO program builds foundation to a strategic framework between international partnerships. We would like to collaborate with you on GWCO, including collaborations on the water cycle mission, data processing, algorithm development, validation, science or SDG applications or any your interested objectives.

Thanks for your attention!

Outline

1. Science and Application Importance

Impact of Global Climate Change on Water Cycle


Expectations:

- 1. Changes in precipitation: less drizzles, more storms (more frequent and higher intensity), less snowfall;
- 2. Increases in evapotranspiration;
- 3. Changes in runoff intensity and characteristics

Consequences: Hydrological extreme events (droughts and floods) will be increased!

Feedback to Climate System: Water cycle system change will result in climate system change.

<u>Applications:</u> Improved understanding and predicting water cycle processes and variation characteristics need to be urgently addressed for science and for their impacts on United Nation Sustainable Development Goals (UN SDGs) : water resources, food security, hydrological disasters...)

