# **Evaluation of GCOM-C/SGLI Lunar Calibration Using GIRO**



<u>Taichiro Hashiguchi</u><sup>a</sup>, Tomoyuki Urabe<sup>b</sup> ,Shigemasa Ando<sup>b</sup>, Yoshihiko Okamura<sup>b</sup>, Kazuhiro Tanaka<sup>b</sup>

<sup>*a*</sup>Remote Sensing Technology Center of Japan (RESTEC) <sup>*b*</sup>Japan Aerospace Exploration Agency (JAXA)

This work is based on a contract with JAXA (JX-PSPC-501115), and complies with GIRO usage policy, "Global Satellite Inter-Calibration System, GIRO and GSICS Lunar Observation Dataset Usage Policy", Version 1.0, May 2015, GSICS-RD005.

GSICS Annual Meeting 2019 GRWG: VIS/NIR Sub-Group, Frascati, Italy Mar. 6, 2019

### Contents



- Introduction
   GCOM-C/SGLI overview
   SGLI specification
   SGLI calibration types
- 2. Lunar calibration
  - ≻Lunar calibration operation
  - Lunar calibration timing
  - ≻Lunar image
  - ➤Analysis method of SGLI lunar calibration
  - ≻Lunar irradiance model
  - ≻Time-series trend results
- 3. Conclusion
  - Future works

# **GCOM-C** overview





- GCOM-C was successfully launched on December 23, 2017 and completed the oneyear initial calibration activities.
- The various GCOM-C scientific products have been released to public since December, 2018. [Data access --> <u>https://gportal.jaxa.jp/</u>]

### Second-generation Global Imager (SGLI) Overview



- VNR-NP consists of three 24-degree-FOV telescopes configured in cross track direction to realize the wide FOV (70 degrees).
- VNR-PL has the tilting mechanism to observe around  $\pm 45$  degrees in along track direction.

The combination of the 45 degrees tilting scanning mirror and Ritchey-Chretien type telescope realize the wide 80 degrees FOV observation swath

# **SGLI** Specification



The SGLI features are 250m (VNR-NP & SW3) and 250/500m (TIR) spatial resolution  $\geq$ and polarization/along-track slant view channels (VNR-PL), which will improve land, coastal, and aerosol observations.

250m over the Land or coastal area. and 1km over offshore

| GCOM-C SGLI    | characteristics                                                       |                   | SGLI channels                  |                |                                           |                  |                                  |                   |  |  |
|----------------|-----------------------------------------------------------------------|-------------------|--------------------------------|----------------|-------------------------------------------|------------------|----------------------------------|-------------------|--|--|
|                | Sun-synchronous                                                       |                   | λ                              | Δλ             | L <sub>std</sub>                          | L <sub>max</sub> | SNR at Lstd                      | IFOV              |  |  |
| Orbit          | (descending local time: 10:30)<br>Altitude 798km, Inclination 98.6deg |                   | VNR-NP, VNR-PL,<br>IRS-SWI: nm |                | VNR-NP, VNR-PL,<br>IRS-SWI<br>:W/m²/sr/µm |                  | VNR-NP, VNR-PL,<br>IRS-SWI : SNR | m                 |  |  |
| Mission Life   | 5 years                                                               |                   | ικς-τικ: μm                    |                | IRS-TIR: Kelvin                           |                  | IRS-TIR: NEAT                    |                   |  |  |
| Scan           | Push-broom electric scan (VNR)<br>Wisk-broom mechanical scan (IRS)    | VN1<br>VN2<br>VN3 | 380<br>412<br>443              | 10<br>10<br>10 | 60<br>75<br>64                            | 210<br>250       | 250<br>400<br>300                | 250<br>250<br>250 |  |  |
|                | 1150km cross track (VNR-NP & VNR-PL)                                  | VN4               | 490                            | 10             | 53                                        | 120              | 400                              | 250               |  |  |
| Scan width     | 1400km cross track (IRS-SWI & IRS-TIR                                 | VN5               | 530                            | 20             | 41                                        | 350              | 250                              | 250               |  |  |
| Digitalization | 12bit Multi-angle                                                     | VN6               | 565                            | 20             | 33                                        | 90               | 400                              | 250               |  |  |
| Polarization   | 3 nolarization angles for VNR-PL 673.5nm and                          |                   | 673.5                          | 20             | 23                                        | 62               | 400                              | 250               |  |  |
| Along track    | Nadir for VNR-NP_IRS-SWI and IRS-TIR                                  |                   | 6/3.5                          | 12             | <u> </u>                                  | 210              | <u> </u>                         | 250<br>250/1000   |  |  |
| direction      | +45 deg and -45 deg for VNR-PL                                        | VN10              | 868.5                          | 20             | 8                                         | 30               | 400                              | 2507 1000         |  |  |
|                |                                                                       | > VN11            | 868.5                          | 20             | 30                                        | 300              | 200                              | 250               |  |  |
|                | VNR-NP, VNR-PL: Solar diffuser, LED, Lunar                            | ▶ P1              | 673.5                          | 20             | 25                                        | 250              | 250                              | 1000              |  |  |
|                | cal. maneuvers, and dark current by                                   |                   | 868.5                          | 20             | 30                                        | 300              | 250                              | 1000              |  |  |
| On-board       | masked pixels and nighttime obs.                                      | SW1               | 1050                           | 20             | 57                                        | 248              | 500                              | 1000              |  |  |
|                | IRS-SWI: Solar diffuser, LED, Lunar, and dark                         | SW2               | 1380                           | 20             | 8                                         | 103              | 150                              | 1000              |  |  |
| Calibration    | current by deep space window                                          | SW3               | 1630                           | 200            | 3                                         | 50               | 57                               | 250               |  |  |
|                | IRS-TIR: Black body and dark current by deep                          | SW4               | 2210                           | 50             | 1.9                                       | 20               | 211                              | 1000              |  |  |
|                | inder body and dark current by deep                                   | T1                | 10.8                           | 0.7            | 300                                       | 340              | 0.2                              | 250/1000          |  |  |
|                | space window                                                          | T2                | 12.0                           | 0.7            | 300                                       | 340              | 0.2                              | 250/1000          |  |  |

TIR: 500m resolution is also used

### **Calibration Types**



#### SGLI Calibration Types

- On-board calibration of solar reflective bands (VNR and IRS-SWIR bands) is achieved by solar light and internal lamps.
- ✓ Radiometric calibration of the emissive infrared bands (IRS-TIR bands) is accomplished through two-point calibration using a temperature-monitored blackbody and view of deep space.
- ✓ GCOM-C has three kinds of dedicated maneuver operation
  - Lunar calibration pitch maneuver for sensor stability.
  - solar angle correction yaw maneuver for solar light calibration.
  - 90-degree yaw maneuver for pixel-to-pixel non-uniformities.

|       | On-orbit calibration                                                                                               |             |             |             |             | Calibration maneuver |             |                  |  |
|-------|--------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|----------------------|-------------|------------------|--|
|       | Solar                                                                                                              | Internal    | Dark        | Black       | Deep        | Lunar                | Solar angle | 90-degree        |  |
|       | diffuser                                                                                                           | lamp        | image       | body        | space       | calibration          | correction  | yaw              |  |
|       | calibration                                                                                                        | calibration | calibration | calibration | calibration | maneuver             | maneuver    | maneuver         |  |
| VNR   | 0                                                                                                                  | 0           | 0           | -           | -           |                      | Δ           | $\bigtriangleup$ |  |
| SWIR  | 0                                                                                                                  | 0           | 0           | -           | $\diamond$  |                      | $\triangle$ | -                |  |
| TIR   | -                                                                                                                  | -           | -           | $\diamond$  | $\diamond$  |                      | -           | -                |  |
| O:Onc | O: Once in 8 days $\diamond$ : Each scan $\Box$ : Once in a month $\triangle$ : Once in a year This presentation!! |             |             |             |             |                      |             |                  |  |

### The lunar observation images are captured by maneuvering GCOM-C attitude around the pitch axis.

Lunar Calibration Operation(1/2)

✓ Pitch maneuver rate is 0.15 degree/second with high stability to obtain precise oversampled lunar image in along-track direction.



### Lunar Calibration Operation(2/2)



- ✓ To evaluate the different telescope and view angle for VNR, the roll angle is selectable.
  - Normally, the roll angle is set to 1degree for VNR-Nadir telescope.
  - Once in a year, roll angle is set to +24/+12/-12/-24degree to evaluate VNR-Left/Right telescope.
  - Data in the case of +12/-12degree are used to simultaneously calibrate two telescopes.



Footprint image

### Lunar Calibration Timing



#### Lunar calibration timing

- The phase angle(Sun Moon Satellite ) is around +7+/-3degree or -7+/-3deg.
  - Lunar calibration concept is similar to SeaWiFS.
- $\checkmark$  Lunar calibration operations are planned to be performed every 29 day during 5 years mission.
  - SGLI acquired its first lunar image with pitch maneuver on January 31, 2018.
  - From Jan to Mar of 2018, SGLI lunar calibrations were performed several times in a ٠ month for initial checkout operation and since then it has observed the Moon once a month at a target phase angle.



#### Phase Angle

# Analysis Method (VNR)



#### Analysis method of SGLI lunar calibration data



# Analysis Method (IRS)



#### Analysis method of SGLI lunar calibration data

#### [Case of IRS-SWIR]

IRS discretely captures the moon because of whisk-broom type radiometer. Therefore, in order to obtain integrated lunar irradiance, it is necessary to round the lunar image.



- ✓ Converts to radiance image  $L_{k,p}$  using radiometric parameter.
- ✓ The observed pixels of each detector are projected on the AT-CT plane in consideration of line-of-sight vector and the pitch maneuver.
- ✓ Converts to irradiance image  $I_{k,p}$  using the solid angle for each pixel.
- ✓ Reconstructs the lunar irradiance image from the weighted average according to the a field of view of each detector in the resampling grid.
   ✓ The lunar integrated irradiance I<sub>k</sub><sup>SGLI</sup> is calculated.



Red line: Resampling grid ※Colors show the observed pixel of each scan



Green : Weighted average pixel

# Lunar Irradiance Model [GIRO]



#### Lunar irradiance model [GIRO]

GIRO

✓ GSICS (Global Space-based Inter-Calibration System) Implementation of the ROLO\* (GIRO) was developed by EUMETSAT in 2014 and provided access to the function of the ROLO lunar irradiance model for the international community.

ROLO\* : the United States Geological Survey (USGS) Robotic Lunar Observatory (ROLO) model



- ✓ Moon center observation time & position.
- ✓ Image (Radiance & DN) of each band.
- ✓ Spectral Response Function of each band.



 $\square$  Lunar irradiance of each band  $I_k^{GIRO}$ 

- ✓ GIRO outputs lunar irradiance  $I_k^{GIRO}$  at each lunar observation time and satellite geometry.
- ✓ Normalized the lunar calibration time series for variations in observing geometry (Spacecraft/Moon distances, Sun/Moon distances, phase and libration angles), using GIRO output.

$$Ratio_{k,N} = I_{k,N}^{SGLI} / I_{k,N}^{GIRC}$$

# Time-series Trend (VNR 1/3)



[Case of VNR-NP]

GCØN

- ✓ Case of Roll angle =+24/+12/-12/-24deg
  - Although including the difference in phase angle, these variations indicate the deviation of inter-telescope.



Time-series Trend (VNR 2/3)

[Case of VNR-NP]

 CH
 VN1
 VN2
 VN3
 VN4
 VN5
 VN6
 VN7
 VN8
 VN9
 VN10
 VN11

 WL [nm]
 380
 412
 443
 490
 530
 565
 673.5
 673.5
 763
 868.5
 868.5



✓ The lunar irradiance observed by SGLI are 5-10 % higher than GIRO output.

□ These results are family with the heritage instrument (MODIS/VIIRS/PLEIADES).



Time-series Trend (VNR 3/3)

[Case of VNR-NP]

 CH
 VN1
 VN2
 VN3
 VN4
 VN5
 VN6
 VN7
 VN8
 VN9
 VN10
 VN11

 WL [nm]
 380
 412
 443
 490
 530
 565
 673.5
 673.5
 763
 868.5
 868.5

Time-series trend of the ratio SGLI to GIRO Normalized 2018/2/1



- ✓ The short wavelength bands (VN01-06) are indicated 1-3% degradation.
- $\checkmark$  The trend of Red to NIR bands (VN07-11) are stable.
  - □ These results are suggested that the short wavelength bands (VN01-06) have 1-3% degradation and that the tendency is the same between Nadir and Left telescope.

# Time-series Trend (IRS 1/2)





# Time-series Trend (IRS 2/2)



[Case of IRS-SWI]

Time-series trend of the ratio SGLI to GIRO Normalized 2018/2/1

| СН      | SW1  | SW2  | SW3  | SW4  |
|---------|------|------|------|------|
| WL [nm] | 1050 | 1380 | 1630 | 2210 |



- ✓ After phase angle dependence corrections, small degradation (~1%) is observed in SW01(1050 nm) and SW02(1380 nm).
  - □ These corrections need to be verified using different calibration results.

# Conclusion



#### Conclusion

- ✓ To evaluate the different telescope and view angle for VNR, the roll angle is selectable in GCOM-C/SGLI lunar calibration.
- ✓ SGLI lunar calibration is performed as planned every 29 days and the radiometric response relative to the GIRO model are in family with those observed for the heritage instruments.
- ✓ The short wavelength bands (VN01-06) are indicated 1-3% degradation and other bands are stable.
- ✓ The ratio of SGLI / GIRO has a characteristic of the phase angle dependency at longer wavelengths(NIR~).

#### Future works

- ✓ Consider the case of roll angle =+24/+12/-12/-24deg.
  - inter-telescope/pixel deviation
  - phase angle dependence
- ✓ Evaluate VNR-PL (Polarization channel).
- $\checkmark$  Comparison with other on-board calibration results (solar diffuser, internal lamp).

#### Acknowledgement

✓ The authors would like to thank GSICS lunar calibration community for GIRO usage.

Please contact us if you have any questions.

E-mail : hashiguchi\_taichiro@restec.or.jp urabe.tomoyuki@jaxa.jp

- □ GCOM-C/SGLI data access
  - https://gportal.jaxa.jp/