

NASA LaRC Spectral Band Adjustment Factor (SBAF) Online Calculation Tool Update

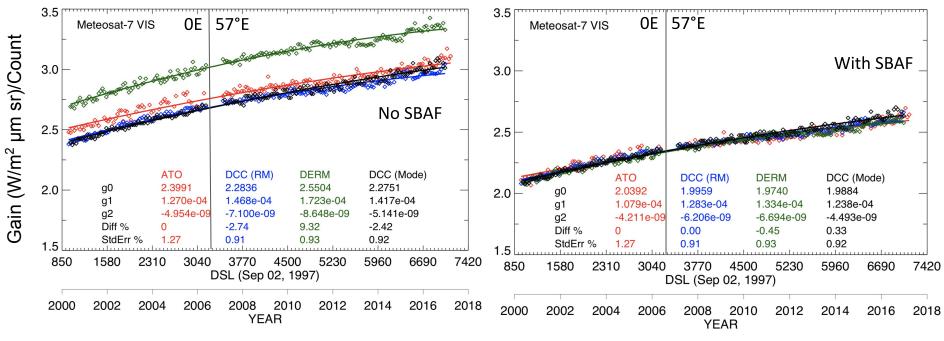
Rajendra Bhatt^a, David R. Doelling^b, Benjamin Scarino^a, Arun Gopalan^a, Thad Chee^a, and Conor Haney^a ^aSSAI, One Enterprise Pkwy Ste 200, Hampton, VA 23666 USA ^bNASA Langley Research Center, 21 Langley Blvd MS 420, Hampton, VA 23681-2199 USA

GSICS Annual Meeting 2019

4 - 8 March 2019 Frascati, Italy

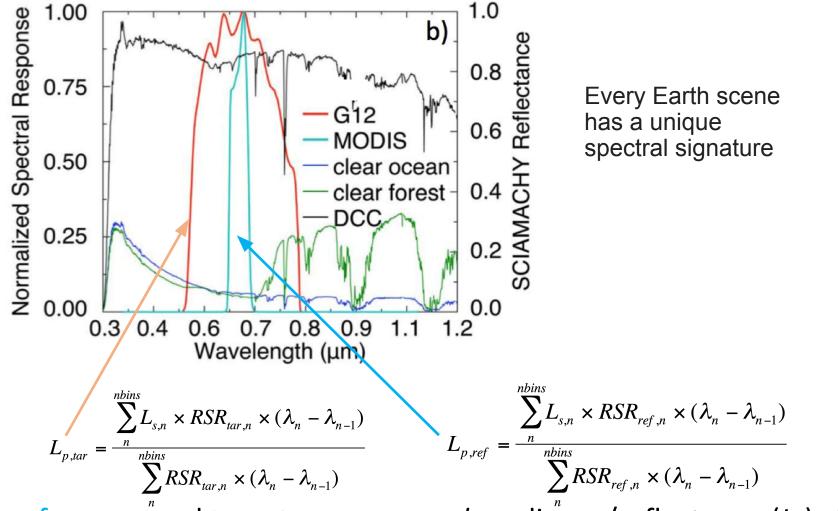
Contact: rajendra.bhatt@nasa.gov

Outline


- Spectral Band Adjustment Factor (SBAF) Review
 importance, theory, and applications
- NASA Langley SBAF and Spectral Plotting Tools
 - Key features and new developments
 - Double Spectral Filtering Highlight
- Spectral Filtering Use-case
- Extreme use case of SBAF tool
 - OSIRIS-REx to EPIC inter-calibration
- Summary

SBAF review: Why SBAF is important?

- Inter-calibration practices utilize different Earth scene types
- Reference and target sensors exhibit spectral differences
- Inter-calibration bias has two components: *absolute radiometric bias* and *spectrally induced bias*
- Accurate SBAF is required to quantify absolute radiometric bias

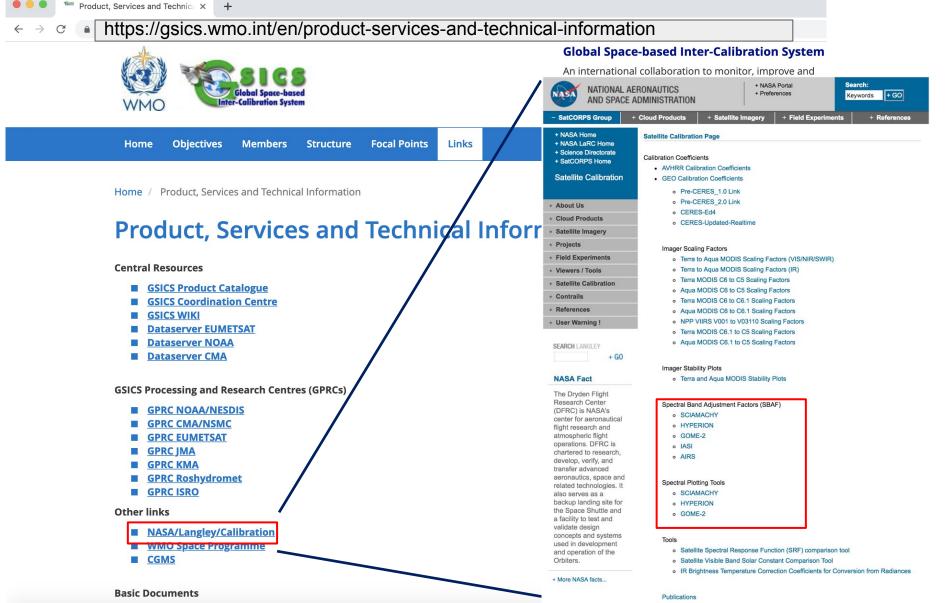


Meteosat-7 VIS calibration referenced to Aqua-MODIS C6.1 Band 1

SBAF calculation

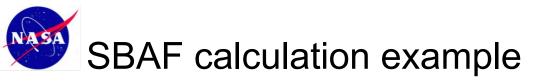
Derive reference-^{*n*} and target-sensor *pseudo* radia^{*n*} nce/reflectance (L_p) via hyperspectral convolution over each RSR to account for band difference/out-of-band absorption

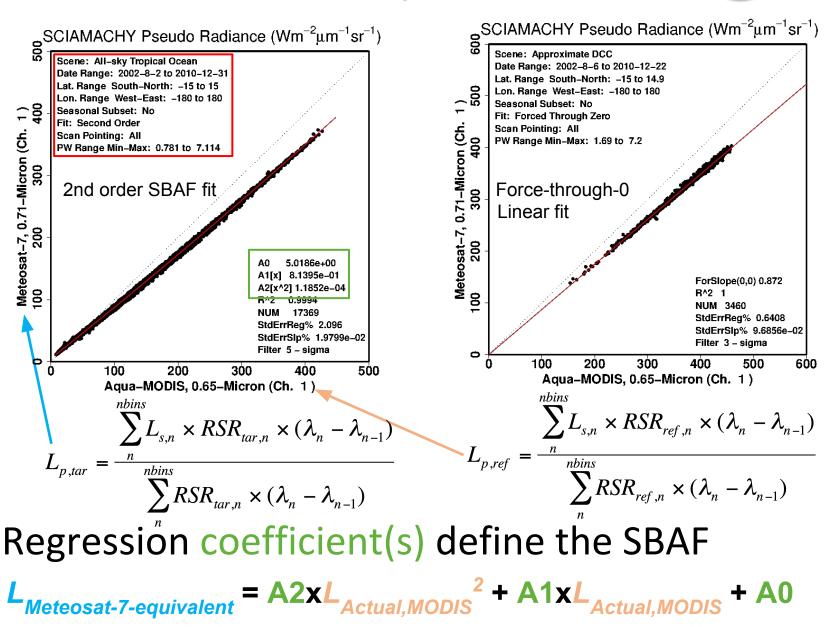
NASA LaRC SBAF tool features


- Based on actual hyperspectral satellite measurements taken from TOA
 - SCIAMACHY, Hyperion, GOME-2
- Over 30 predefined Earth scene selection (deserts, polar ice, DCC, all-sky tropical ocean, etc)
- Data subsetting control options
 - Unit : radiance and reflectance
 - Fit (SBAF) type : forced-fit, linear, 2nd and 3rd order regression
 - Angle allowance
 - Precipitable water allowance
 - Outlier cutoff
 - Fit/plot limits
 - Domain/time/season
- Double spectral filtering (new)

Special thanks to ESA, EUMETSAT, USGS, and NASA teams for help in obtaining, reading, and correcting their hypersectral data.

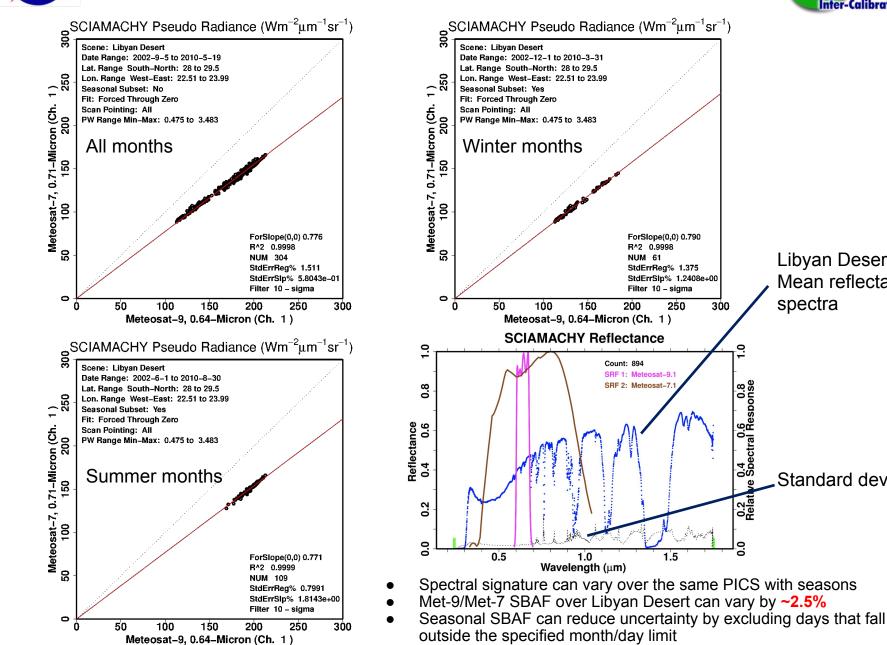
NASA LaRC Calibration Webpage


NASA URL: https://cloudsway2.larc.nasa.gov/cgi-bin/site/showdoc?mnemonic=SAT_CALIB_USER


SCIAMACHY SBAF Calculation tool input

Earth Spectra (SCIAMACHY)	Reference (X-axis) SRF	Units	Regression/Subs	setting/Plotting/Spatial/Date Controls
Arabia 1	ATS-2	Pseudo Radiance	Force	Fit
Arabia 2	Aqua-MODIS	Pseudo Scaled Radiance	Linear	
Badain Jaran Desert	Aqua-MODIS-MCST		2nd Or	der
Dome C	CERES-BB		3rd Or	der
Greenland Central	COMS-1			Close
Greenland South	DSCOVR-EPIC	Created Filter 4		
Libya 1	EO-1-ALI	Spectral Filter 1	Min AZA 103.00	N
Libyan Desert	FY-2C	Min µm 1 0.24	Max AZA 156.40	32.20
Niger 1	FY-2D			W -114.5 -114.3 E
Sonoran Desert	FY-2E	Max µm 1 1.75	Min SZA 25.40	32.00
Uyuni Desert	FY-4			S2.00
All-sky Tropical Land	GMS-1	Min Rad 1: 0.0	Max SZA 60.90	5
All-sky Tropical Ocean	GMS-2	Max Rad 1: 1000.0		
Clear-sky Tropical Ocean	GMS-3		VZA 0-30 ᅌ	
Marine Water Cloud	Central Wavelength:	Min Ref 1 0.0		
Marine Ice Cloud	0.65 Micron (1)		Min PW 0.355	Start Jun ᅌ 5 ᅌ 2003
Approximate DCC		Max Ref 1 1.0		
Precise DCC			Max PW 3.106	End Mar ᅌ 25 ᅌ 2010
North Pole	Townsh (Manufact) ODF			Seasonal
South Pole	Target (Y-axis) SRF		σ-cutoff 5.	
Global	GOES-11	Spectral Filter 2		
Evergreen Needleleaf Fore	GOES-12		Fit Min X 0.	
Evergreen Broadleaf Fores	GOES-13	Min µm 2 0.24		
Deciduous Needleleaf For	GOES-14	Max µm 2 1.75	Fit Max X 1.	
Deciduous Broadleaf Fore	GOES-15			
Mixed Forests	GOES-16		Plot Min X 0.	
Closed Shrublands	GOES-17	Min Rad 2 0.0	Plot Max X 1.	
Open Shrublands	GOES-5	Max Rad 2 1000.0		
Woody Savannas	GOES-6			
Savannas	GOES-7	Min Ref 2 0.0		
Grasslands	GOES-8	Max Ref 2 1.0		
Permanent Wetlands	GOES-9	Max Rei 2 1.0		
Croplands	Himawari-8-AHI			
Cropland/Natural Vegetati	Himawari-9-AHI			
Barren	Central Wavelength:			
	0.63 Micron (1)			
				Plot

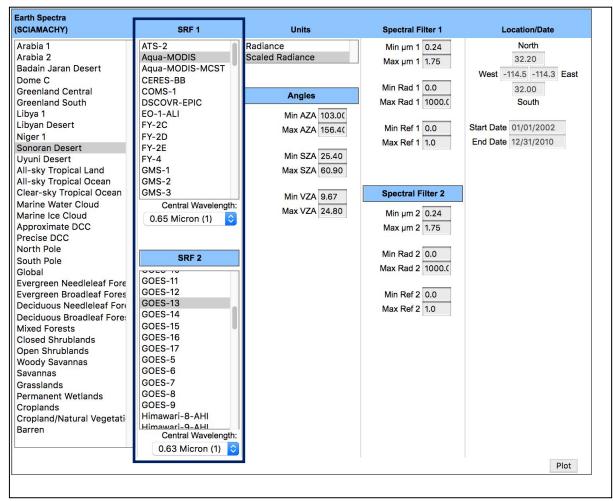
Seasonal SBAF



Libyan Desert

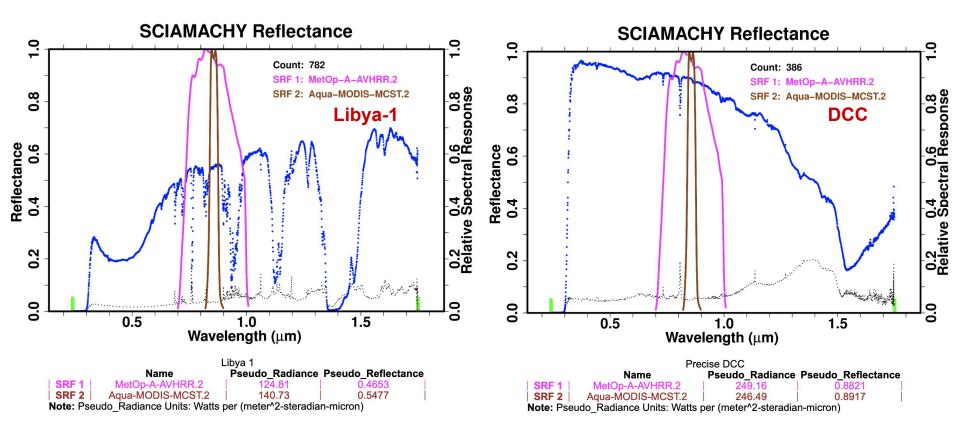
spectra

Mean reflectance


Standard deviation

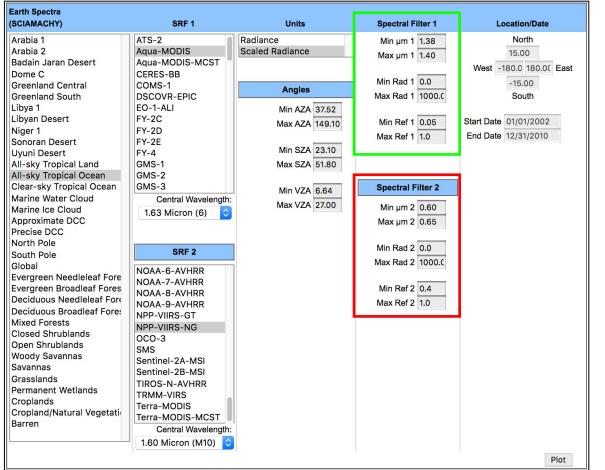
SCIAMACHY Spectra Plotting tool

 Plot the average SCIAMACHY
 Earth-reflected Spectra for a chosen scene/PICS and unit type


 Overlay and convolve with chosen spectral response functions (SRFs)

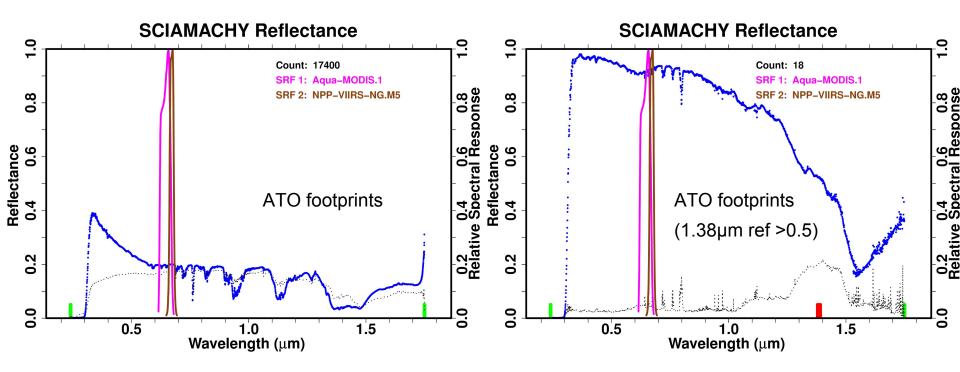
 Yields SCIAMACHY-average SRF-defined pseudo radiance/reflectance

SCIAMACHY Spectra Tool Input

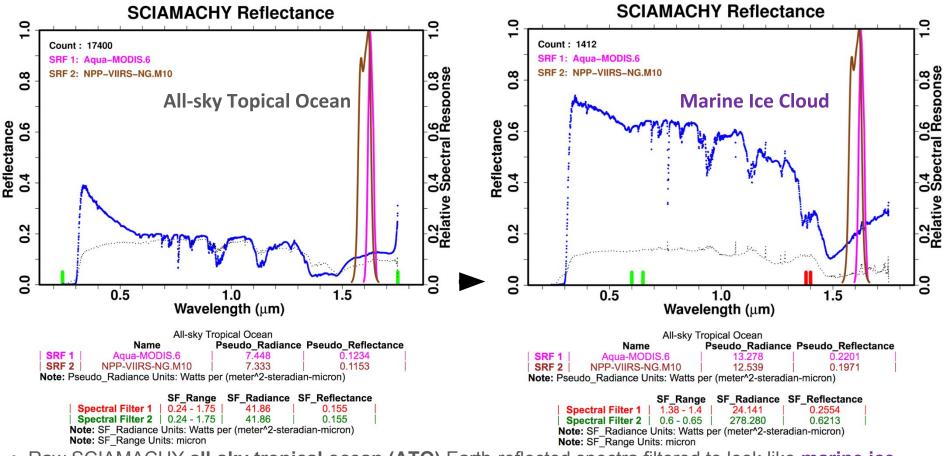


- Raw SCIAMACHY Earth-reflected spectra (blue dotted line)
- Table shows mean pseudo radiance and reflectance values based on chosen SRFs
- Black dotted line indicates standard deviation of footprints

Spectral Filtering: Spectra Plotting tool

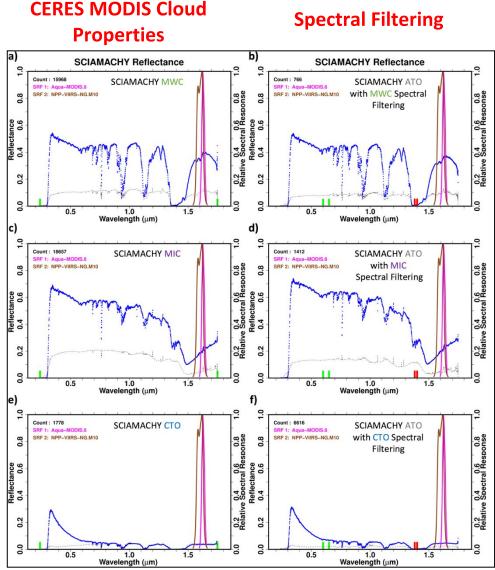


- Spectral filter allows exclusion of hyperspectral footprints that do not meet specified criteria
- Indicate the min/max allowable radiance or reflectance (or both) permitted within the chosen wavelength range
- Remove outliers, ensure pristineness, find narrow subset of broad dataset
- Use two spectral filters for better control of scene specification


Extraction of DCC conditions from Raw SCIAMACHY **all-sky tropical ocean (ATO)** footprints

- DCC are the most reflective targets at 1.38µm wavelength
- Based on MODIS and VIIRS observations, DCC reflectance is ~0.5 at 1.38 µm band
- Limiting the ATO reflectance at 1.38µm to >0.5 results in a DCC spectra

Double Spectral Filtering Example

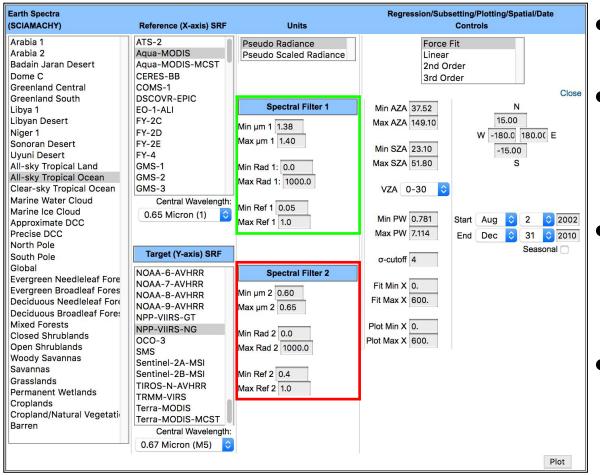

- Raw SCIAMACHY all-sky tropical ocean (ATO) Earth-reflected spectra filtered to look like marine ice clouds (MIC)
- Average radiance/reflectance within each spectral filter range also available
- Useful in scene selection for bands in which composition cannot be easily **distinguished** by radiance or reflectance thresholds

```
• e.g., 1.6 μm
```


Scene Specification by Spectral Filter

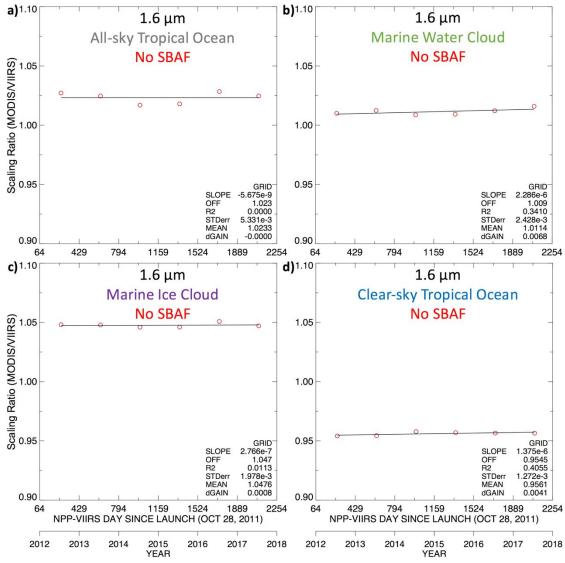
Left (a, c, e): SCIAMACHY spectra over CERES-identified marine water clouds (MWC), MIC, and clear-sky tropical ocean (CTO)

 Right (b, d, f): MWC, MIC, and CTO scenes duplicated from spectral filtering of ATO


	Spectral Filter 1			Spectral Filter 2		
	Range (µm)	Min Ref.	Max Ref.	Range (µm)	Min Ref.	Max Ref.
MWC	1.38-1.40	0.00	0.05	0.60-0.65	0.30	1.00
MIC	1.38-1.40	0.05	1.00	0.60-0.65	0.40	1.00
СТО	1.38-1.40	0.00	0.05	0.60-0.65	0.00	0.11

Wavelength ranges and min/max reflectance values used for spectral Filters **1** and **2** to come up with the **MWC**-, **MIC**-, and **CTO**-equivalent scenes using **ATO** Earth-reflected spectra

SBAF Calculation by Spectral Filter

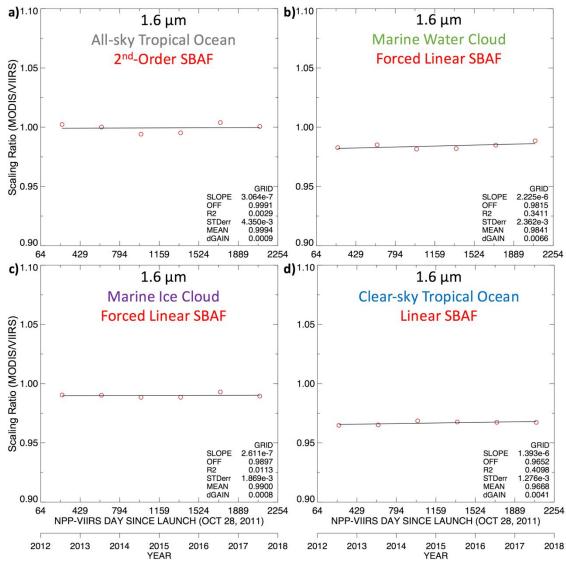


- Employ same spectral filters in the SBAF tool
- SBAF regression plots include only hyperspectral footprints that satisfy both filters
- Use filters with calibration data (e.g., MODIS channels) to isolate desired scenes
- Same spectral filter for calibration data and SBAF should help ensure the SBAF is applicable to the target scene

Aqua-MODIS B6 /VIIRS M10 (1.6-µm) SCALING RATIO: NO SBAF

1.6 µm	ΑΤΟ	MWC	MIC	СТО
No SBAF	1.0233	1.0114	1.0476	0.9561

- Average Aqua-MODIS and NPP-VIIRS SNO scaling ratio (MODIS/VIIRS) varies greatly depending on scene type
- Can we at least

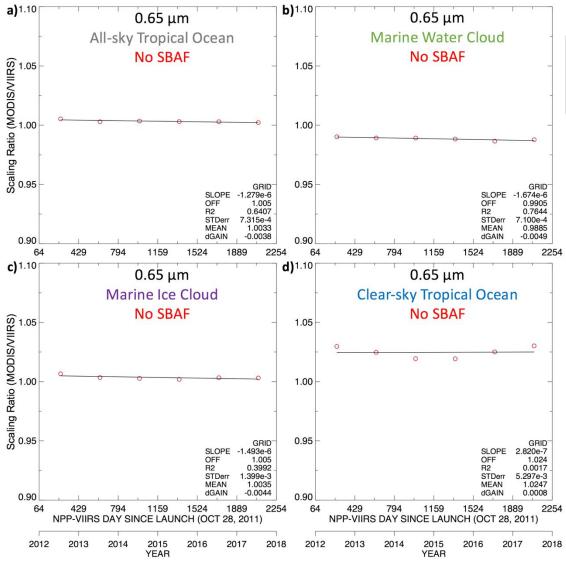

better-characterize the "all-sky" subset through spectral filtering and spectrally filtered SBAFs?

• If SBAFs were perfect, then the scaling ratio would be the same regardless of scene type

Aqua-MODIS B6 /VIIRS M10 (1.6- μ m) SCALING RATIO: With SBAF

Mean Scal	ing	Ratio
-----------	-----	-------

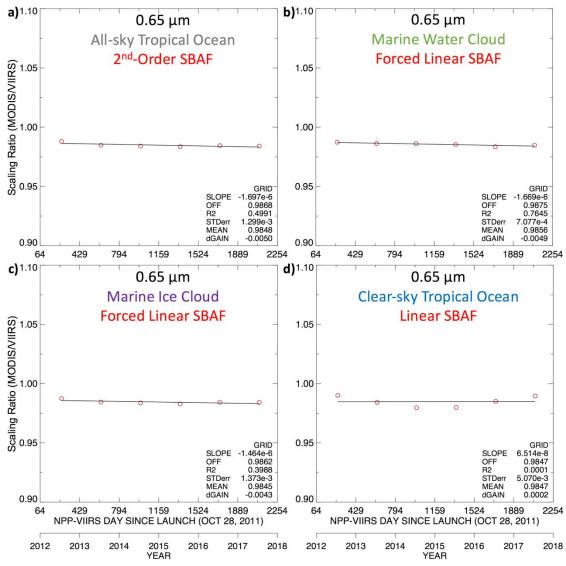
1.6 µm	ΑΤΟ	MWC	MIC	СТО
No SBAF	1.0233	1.0114	1.0476	0.9561
With SBAF	0.9994	0.9841	0.9900	0.9668


 Spectrally filtered SBAFs help bring MWC- and MIC-based scaling ratios closer

- The **MIC** and **MWC** ratios show the same radiance values, but the 2nd-order **ATO** SBAF does not effectively characterize both scenes
- For **CTO**, the radiances are dark and cloud contamination would induce strong bias
- SCIAMACHY uses very large footprints and thus it is difficult to reliably find **CTO** adequate enough for this channel

MODIS B1/VIIRS M5 (0.65-µm) SCALING RATIO: NO SBAF

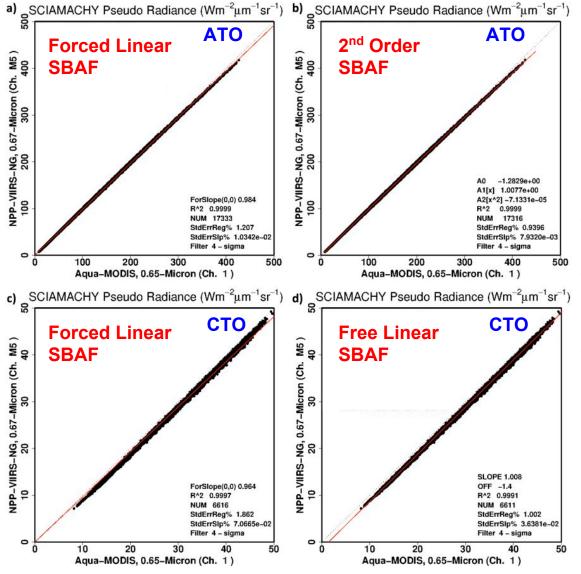
Mean Scaling Ratio


0.65 μm	ΑΤΟ	MWC	MIC	СТО
No SBAF	1.0033	0.9885	1.0035	1.0247

- For 0.65-µm channel, pre-SBAF maximum scaling discrepancy is 3.7%
- Mean ratio standard deviation is 1.5%

MODIS B1/VIIRS M5 (0.65- μ m) SCALING RATIO: WITH SBAF

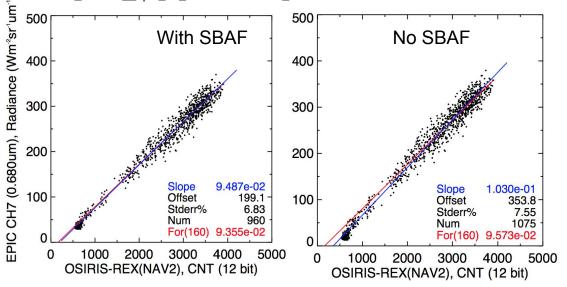
Mean S	Scalin	g Ratio
--------	--------	---------

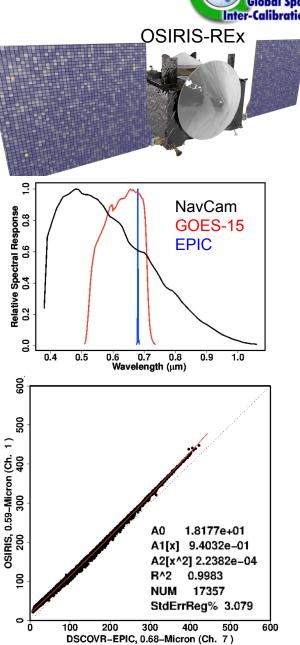

0.65 μm	ΑΤΟ	MWC	MIC	СТО
No SBAF	1.0033	0.9885	1.0035	1.0247
With SBAF	0.9848	0.9856	0.9845	0.9847

- After SBAF, the maximum discrepancy is reduced to 0.1%
- Mean ratio standard deviation fell to 0.05%
- 2nd-order ATO SBAF yields values between MWC and MIC, which is expected if the single SBAF accurately represents both scene types

Choice of SBAF 'Degree of Polynomial'

- User can select the regression type (degree of polynomial) that most effectively captures the variability of the pseudo radiance pairs
- The SBAF using linear regression forced through the origin (i.e. Force Slope or 0th Order) does not accurately characterize ATO nor CTO spectra
- ATO is better represented with a quadratic polynomial (i.e., 2nd Order)
- CTO is better represented with a "free" linear regression (i.e., Slope and Offset or 1st Order)
- Better characterization results in regression standard error (STDErrReg%) improvement


STDErrReg%	ΑΤΟ	СТО
Forced linear	1.207	1.862
1 st -Order	1.158	1.002
2 nd -Oder	0.940	0.995



Extreme use case of SBAF

- OSIRIS-REx is a NASA asteroid study mission
- Goal is to obtain a sample from asteroid Bennu
- NASA LaRC's TISA calibration team has performed post-launch radiometric calibration of on-board NavCam imagers
- OSIRIS-REx acquired Earth viewed images during an Earth gravity assist flyby maneuver on September 22, 2017
- Ray-matched with calibrated radiances of GOES-15 and DSCOVR EPIC over ATO
- ATO and pre-launch calibrations agree within 3% for NavCam 1 and within 4% for NavCam 2.

- NASA LaRC's SBAF Tool enables accurately quantifying spectrally induced biases in cross-calibration of satellite sensors
- We will continue to develop and actively maintain/enhance open-access, on-demand calibration tools
 - Benefit to GSICS and the broader calibration community
- Tell us how these tools can be made more useful
 - Add new satellites SRFs to database
 - Additional subsetting options
 - Different output controls
- E.g., spectral filtering options arose from need to accurately distinguish scene conditions for a chosen channel based on energy level stratification at separate wavelengths
 - More accurate SBAF
 - More accurate radiometric inter-comparison