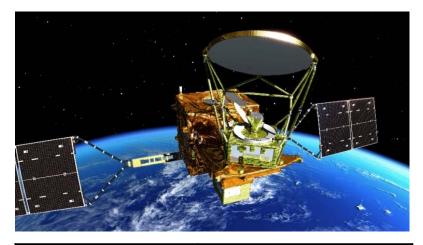


AMSR2/AMSR3 Updates


Misako Kachi JAXA

March 5. 2019@GISCS Annual Meeting 2019



Development of AMSR Series

Sensor	MOS-1/MSR	ADEOS-II/AMSR	Aqua/AMSR-E	GCOM-W/AMSR2
Coverage	Direct receive only	Global	Global	Global
Swath	317km	1600km	1450km	1617km
Frequencies (GHz)	2 (23,31)	9 (6.9,10,18,23, 36,50,52,89)	6 (6.9,10,18,23, 36,89)	7 (6.9,7.3,10,18, 23,36,89)
Polarization	Mixed V and H	V and H	V and H	V and H
Antenna Size	0.5m	2.0m	1.6m	2.0m
Spatial Res.	23km @31GHz	8x14km @36GHz	8x14km @36GHz	7x12km @36GHz

Overview of GCOM-W and AMSR2

Instrument	Advanced Microwave Scanning Radiometer 2 (AMSR2)	
Altitude	~700 km	
Orbital inclination	98.2 deg	
Local sun time at Ascending node	13:30	
Launch vehicle	H-IIA	
Launch	May 18, 2012	
Designed lifetime	5 years	

- ✓ Successor of Aqua/AMSR-E (launched in May 2002), providing continuous data for climate studies and operational applications
- ✓ Joining A-train constellation (same as Aqua) and also GPM constellation
- ✓ Carrying AMSR2, a multi-polarization and multi-frequency microwave imager
- ✓ Observing various water-related ECVs at high spatial resolution
- ✓ Improving on-board calibration target has resulted reduction of annual TB variation due to calibration and improvement of TB stability
- Achieved designed mission life (5-year) on May 18, 2017, and continues observation
 Enough fuels to keep current orbit for more than 15 years

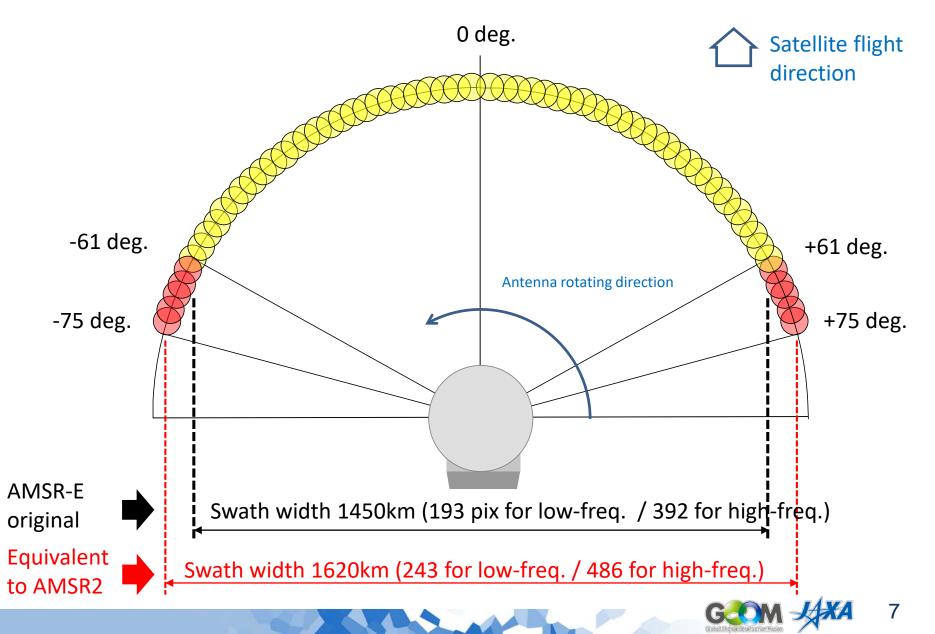
GCOM-W Operation Status

GCOM-W satellite and AMSR2 instruments are in healthy conditions.

- No major problem in data acquisition and processing
- Data Loss events (except annual inclination adjust maneuvers):
 - Jul. 17, 18, 23, 2012: Calibration activity (half orbit each day)
 - May 10 14, 2013 : SEU-induced AMSR2 observation halt #1
 - Dec. 4, 2015: SEU-induced data recorder halt #1 (20 hours)
 - Apr. 15, 2016: SEU-induced AMSR2 observation halt #2 (20 hours)
 - Aug. 3, 2016: Retrograde maneuver (half orbit)
 - Feb. 22, 2017: Retrograde maneuver (half orbit)
 - Jul. 12, 2017: Retrograde maneuver (half orbit)
 - Sep. 27, 2017: SEU-induced data recorder halt #2 (20 hours)
 - Nov. 25, 2017: SEU-induced AMSR2 observation halt #3 (14 hours)
 - Mar. 14, 2018: Retrograde maneuver (half orbit)
 - Dec. 16, 2018: SEU-induced data recorder halt #3 (10 hours)
- Enough fuels to keep current orbit
- Initial indication of aging and degradation of mechanical bearings lubricants of AMSR2

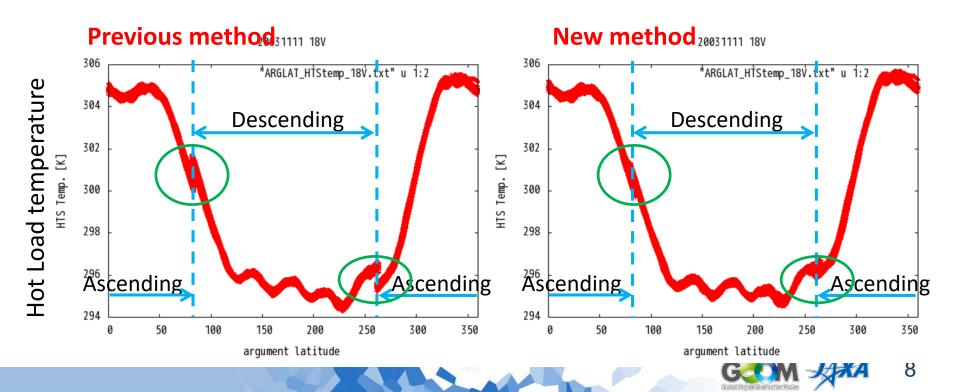
AMSR2/AMSR-E Product Status

- AMSR2
 - Level 1 & 3 (brightness temperature): Ver. 2.2 (Aug. 2016)
 - Level 2 & 3 (geophysical parameters): Ver.2 (Mar. 2015)
 - Total precipitable water, integrated cloud liquid water, precipitation, snow depth
 - Level 2 & 3 (geophysical parameters): Ver.3 (Mar. 2017)
 - SST, sea surface wind speed, sea ice concentration, soil moisture content
 - Level 2 & 3 (research):
 - 10-GHz SST (included in standard SST): Ver.3 (Mar. 2017)
 - All-weather sea surface wind speed: Ver.3 (Jan. 2018)
 - Land surface temperature: Ver.1 (Feb. 2018)
 - Thin ice detection, Total precipitable water over land: Ver. 1 (end of Jan. 2019)
- AMSR-E (in AMSR2 format and algorithms)
 - Level 1 & 3 (brightness temperature): Ver.4 (Apr. 2018)
 - Level 2 & 3 (geophysical parameters): Ver.8 in early JFY2019

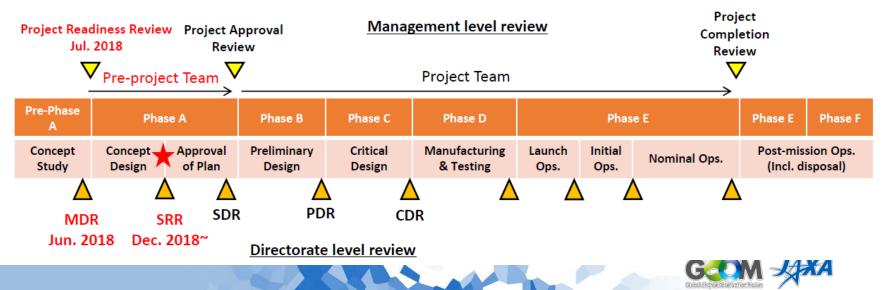


AMSR-E L1 Product Ver. 4

- L1 Reprocessing Policy
 - Brightness temperature (TB) between AMSR-E and AMSR2 is not adjusted
 - Swath width of AMSR-E (1450km, 196 pixels for low-freq. Ch. / 392 for high-freq. Ch.) is extended to be equivalent to that of AMSR2 (1620km, 243 pixels for low-freq. Ch. / 486 for high-freq. Ch.)
 - AMSR-E L1R (resampling) product, which is highly requested by users, are newly developed
- Improvements in L1B Algorithm
 - Bias correction of TB is applied to scan edges to extend swath width
 - Improved method to calculate hot load temperature correction by using two orbit paths to resolve gaps between Ascending and Descending orbit products
 - Improved geometric parameters
- AMSR-E L1 products (ver.4) has been released to public through the G-Portal since April 2018.
 - https://www.gportal.jaxa.jp/gp/



AMSR-E L1 Ver.4: Extend Swath Width


AMSR-E L1 Ver.4: Hot Load Correction

- Parameters to correct hot load temperature are calculated using half orbit data previously, but gaps are found at boundary of A/D products.
- In new version, two orbits path data (1 orbit before and after) are used for calculation and gaps are resolved.

Status of AMSR2 follow-on mission

- "Development of the AMSR2's successor sensor (Launch on the GOSAT-3 satellite)" is mentioned on The Roadmap for the Basic Plan on Space Policy revised December, 2018.
 - AMSR2 follow-on instrument will share satellite bus with greenhouse-gas observation instrument developed by Ministry of Environment for a follow-on mission of Greenhouse-gas Observation Satellite 2 (GOSAT-2).
- JAXA proceeds with internal process to launch development project.
 - Mission Definition Review (MDR) and project readiness reviews were completed in Jun. 2018.
 - GOSAT-3 pre-project team takes charge of Project Preparation Phase (Phase-A) activities from Sep. 1, 2019.
 - System Requirement Review (SRR) was completed in Jan. 2019.

AMSR2 follow-on specification

- Specification of the AMSR2 follow-on instrument
 - Almost equivalent to AMSR2
 - A few high frequency channels (166 GHz and 183 GHz) is considered for approval.
- Orbit will be 666 km altitude (same as GOSAT-1) and 13:30 LT in Ascending node (same as GCOM-W)
 - Finer FOV (5% less), narrower swath width (1535km)
- Targets of the follow-on mission
 - To produce long-term continuous data record
 - To enhance operational utilization of near-real time data
 - weather forecast including hurricane analysis
 - fishery in coastal area
 - navigational assistance on arctic shipping route
 - New geophysical parameter products
- New standard products for the mission above
 - solid precipitation, water vapor over land, high-resolution sea surface temperature, all-weather sea surface wind speed and high-resolution sea ice concentration

Summary

- JAXA's GCOM-W mission is now flying more than 6-years without any serious problem. Satellite and sensor (AMSR2) is in healthy condition.
 - AMSR2 products are distributed to public via internet. Transfer to G-Portal (<u>https://www.gportal.jaxa.jp/gp/</u>) has completed in June 2018
 - 8 standard geophysical parameters and 3 research products are now available, and 2 research products are close to release
- AMSR-E reprocessing products applying AMSR2 format and algorithms are in preparation, expecting contribution to CDRs
 - L1B and L1R (resampling: new) products are already available at G-Portal
 - L2 products are now validated and show accuracy equivalent to AMSR2
- AMSR2 follow-on sensor (AMSR3) and TANSO-2 successor sensor will be joint mission and JAXA has initiated pre-project team phase Sep. 1, 2018.
 - Orbit is defined to keep AMSR2 LT observation (13:30 ATAN), but altitude is lower than GCOM-W (699km -> 666km: same as GOSAT orbit)
 - Sensor specification of AMSR3 will be equivalent to AMSR2 except additional 166/183 GHz channels for solid precipitation retrievals and water vapor analysis in NWP

