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Background (1)
FIDUCEO project

Harmonised(1) satellite series is one where all the calibrations of 
the sensors have been done consistently relative to reference 
datasets which can be traced back to known reference sources, in 
an ideal case back to SI. 

How to build reference datasets for satellite series harmonisation?

(1) Unlike harmonisation, homogenisation is where all satellites are forced to look the same such that 
when looking at the same location at the same time they would (in theory) give the same signal
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Operational Calibration of the Meteosat
Radiometer VIS Band

Yves M. Govaerts, Marco Clerici, and Nicolas Clerbaux

Abstract—An advanced operational algorithm has been devel-
oped for the routine calibration of the Meteosat radiometer solar
channel. The calibration method relies on calculated radiances
over bright desert sites whereas ocean targets are used for con-
sistency checks. Calibration errors are estimated accounting for
the uncertainties of both the sensor spectral response characteri-
zation and target property description. This algorithm has been
used to systematically calibrate Meteosat-5 and -7 observations.
Results show that it is possible to calibrate the visible band with
an estimated accuracy of about 6% when the sensor response
characterization is reliable and to monitor the sensor long-term
drift. These results are confirmed by Clouds and the Earth’s
Radiant Energy System observations.

Index Terms—Calibration, Meteosat.

I. INTRODUCTION

THE METEOSAT satellite system was designed nearly 30
years ago, essentially for operational imagery purposes.

The primary objective of this program is the acquisition of earth
atmosphere images and their near real-time dissemination to the
meteorological user’s community. Nevertheless, the potential
value of the Meteosat Visible and Infrared Imager (MVIRI) data
for climate monitoring should not be underestimated. During
the late 1970s and early 1980s, spaceborne observations of the
earth were very scarce, essentially limited to geostationary me-
teorological observations and a few polar platforms. The extent
of the Meteosat observations, acquired every 30 min in almost
identical conditions during more than 20 years, represents a po-
tentially valuable input to monitor or understand regional cli-
mate processes [1].

A prerequisite to such quantitative exploitation is to per-
form the radiometer calibration as accurately and precisely as
possible. As no onboard calibration device exists for the solar
channel (referred to as the visible (VIS) band), various vicarious
approaches have been proposed in the past, but these attempts
remain limited and isolated efforts. These approaches can
essentially be divided into three categories: 1) instrument cross
calibration (e.g., [2]–[4]); 2) airborne calibration campaign [5];
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and 3) radiative transfer modeling (e.g., [6]–[8]). These latter
studies showed that calculated radiances can be used to derive
absolute calibration coefficients on a regular basis with an ac-
curacy comparable to the one derived from airborne campaigns,
but also to monitor the sensor long-term drift. So far, none of
these methods has been used on an operational basis, although
this has been proven to be feasible for the thermal channels [9],
[10]. This situation has limited the quantitative exploitation of
the VIS band observations and constrained users to develop
their own calibration method prior to the derivation of any
geophysical parameters (e.g., [7] and [11]). The complexity
of consistent calibration coefficient estimation for the seven
MVIRI instruments should not be underestimated. One of
the major challenging problem concerns the lack of reliable
characterization of the VIS band spectral response prior to that
on the Meteosat-7 instrument [12], so that postlaunch correc-
tions might be required as is the case for the Advanced Very
High Resolution Radiometer instrument onboard the National
Oceanic and Atmospheric Administration polar platform [13].
As demonstrated by [14], two spectrally different calibration
targets could be used to verify the reliability of the MVIRI VIS
band spectral response characterization and to evaluate whether
postlaunch adjustments should be envisaged.

The objective of this paper is to present the operational cali-
bration method developed at EUMETSAT in support of meteo-
rological and climate applications. This novel method explicitly
accounts for the radiometric noise, the sensor spectral response
error, and simulation uncertainties (see Section II). The choice
of this method is discussed in [15] and relies on radiative transfer
modeling over bright deserts as the primary calibration target
type. Open sea surface targets are used to verify the consistency
and reliability of the results. This novel calibration method has
been integrated in an operational facility to permit a systematic
calibration of both archived and currently acquired Meteosat
VIS band observations, including an automated a priori estima-
tion of the calibration error (Section III). Results obtained for
the calibration of Meteosat-5 and -7 demonstrate that it is pos-
sible to calibrate the VIS band with an estimated accuracy of
about %, but this error increases as the uncertainty of the
sensor spectral response characterization increases, as shown
in Section IV. The proposed method also permits the precise
monitoring of the long-term drift of the instrument. These re-
sults have been confirmed with an independent calibration exer-
cise relying on Clouds and the Earth’s Radiant Energy System
(CERES) as reference (Section V). It is thus expected that this
new calibration method will increase the value of the Meteosat
First Generation (MFG) mission to support climate monitoring
activities.

0196-2892/04$20.00 © 2004 IEEE
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SEVIRI Solar Channel Calibration (SSCC)

The calibration reference relies on simulated radiance 
over 18 bright desert targets over a 5-day period 
(plus open ocean for verification).

How to estimate the uncertainty of the calibration 
reference?

SSCC uncertainty propagation
• 18 bright desert targets (sea as verification)
• 5-day accumulation period
• 4 spectral bands (0.6, 0.8, 1.6, HRVIS)
• Uncertainty propagation (from the state variables 

to simulated calibration reference) is based on:
• Separation of random and systematic 

uncertainties
• Uncertainties of state variables are assumed 

uncorrelated;
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Simple recipe for uncertainty propgaration

1. Atmospheric parameters are not correlated in time;

2. Surface parameters are not correlated in space;

3. No spectral correlation is accounted for (e.g., aerosol 
optical thickness or surface anisotropy).
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II. STATEMENT OF THE PROBLEM

Vicarious calibration requires an independent estimation of
the radiance entering a detector, often referred to as the cali-
bration reference. This reference radiance should be character-
ized at the entrance of the instrument to account for the full op-
tical path used under normal acquisition mode. The radiance
actually reaching the detectors, referred to as the effective or
band-weighted radiance , and which is converted into digital
counts , depends thus on both the spectral radiance im-
pinging on a spaceborne instrument at the wavelength and the
normalized spectral response (NSR) of the sensor

(1)

The NSR is normalized so that its maximum value is equal
to one. On MVIRI, since the sensor responds linearly to the
incoming radiation , the digitalized output signal can
be represented in a simple way with

(2)

where is the sensor gain and its offset, i.e., the zero
intercept. Calibrating remote sensing data corresponds thus to
finding the best estimate of on the basis of the observed
count when pointing toward the calibration reference

(3)

where is the so-called calibration coefficient. The
offset value is known from deep space observations (see Ap-
pendix A). Hence, as can be seen from (3), the uncertainty char-
acterization of both and are critical for the generation
of reliable calibration coefficients. In the case of simulated the
estimation of the top-of-atmosphere (TOA) spectral radiances

is subject to target property errors, whereas the estimation
of the effective radiance is additionally affected by errors in the
prelaunch measurement of the NSR . A meaningful calibra-
tion method should thus explicitly account for uncertainties in
the characterization of , since this error might be large for
the VIS band.

Let us first examine the error of the simulated spectral
radiance . Spectral radiance impinging on a spaceborne in-
strument at wavelength is determined by a set of independent
parameters that defines the observation conditions and a
set of state variables describing the radiative properties of
the observed targets, i.e., the atmosphere and the underlying sur-
face. The independent parameters include the sun and viewing
angles, the time of observation and finally the target location.
Large uniform targets have been selected (see Appendix B) so
that independent variable errors, principally determined by ge-
olocation imprecision, could be neglected. The bulk effort con-
cerning the target description consists thus in the characteriza-
tion of the state variables of the radiative transfer model
and the estimation of their respective errors . It is, therefore,
necessary to identify a set of targets for which it is possible to
define as accurately as possible the atmospheric and surface pa-
rameters during a period similar to the Meteosat archive
duration. Since it is not possible to document surface radiative
properties retrospectively, it is preferable to select stable and
uniform targets, as can be found in arid desert areas. Error in

the estimation of is expressed as a quadratic sum of the
uncertainty contribution of each parameter

(4)

where is the number of parameters. The partial derivative of
the outgoing radiance with respect to the param-
eter represents the sensitivity of the spectral radiance
at wavelength for a specified set of independent parameters
solely due to small perturbations in state variable [8]. An ex-
ample of the estimation of and over a desert and sea
targets is shown in Fig. 1, top panel. Typical relative errors range
between 10% to 15% within the VIS band spectral interval for
one single simulation.

Let us now consider the error of the NSR characteri-
zation . Unfortunately, the shape of for the VIS band
of MVIRI prior to Meteosat-7 has been poorly characterized.
Only some scarce and unreliable measurements exist in the
0.5–0.9- m interval. Values outside this interval are simply
extrapolated. Since this error has not been characterized prior to
the launch, a theoretical estimation is proposed in Appendix A
that accounts for the errors on the wavelength definition accu-
racy, the instrument transmittance measurement and finally the
extrapolation outside the characterization interval. An example
of NSR error is shown in Fig. 1, bottom panel.

As can be seen in Fig. 1, spectral radiance over desert and sea
notably differs, both in shape and intensity, but the ratio

should be the same for these two cases when the NSR char-
acterization is reliable and the radiometer responds linearly with
respect to incoming radiation. Erroneous characterization
might lead to inconsistent calibration results, i.e., that differ ac-
cording to the spectral characteristics of the calibration refer-
ence. Sea and desert targets offer thus a possibility to control the
reliability of the NSR characterization, provided the estimation
of is accurate enough. Recent studies have demonstrated
that simulations over desert targets have an average accuracy of
about 3% when many observations are used [16]. Hence, desert
targets are used as primary calibration targets whereas sea tar-
gets are used for consistency check purposes. The accuracy of
calibration coefficients derived with simulated data is thus con-
strained by all the uncertainties associated with the input data
as well as their propagation throughout the various calibration
processing steps. A method to estimate and minimize these er-
rors is described in the next section.

III. OPERATIONAL CALIBRATION METHOD

A. Overview

As seen in the previous section, the calibration coefficient
estimation is affected both by calculated radiance uncertainties
and the instrument characteristic errors. It is, therefore, neces-
sary to estimate the corresponding impact on accuracy and,
if possible, to minimize this error. The processing of a large
amount of data should permit the reduction of the calibration er-
rors, provided that these errors are independent and random, i.e.,
not systematic. The proposed calibration algorithm is designed
to minimize the error propagation while deriving a calibration
coefficient. A twofold strategy has been developed to reduce the
error. First, a target identification process takes place to find cases
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Difference between the 
targets for one day of 
(hourly) observations

Uncertainty reduction as a number of 
accumulation days

Uncertainty reduction as a number of desert 
targets
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Difference between the 
targets for one day of 
(hourly) observations

Uncertainty reduction as a number of 
accumulation days

Uncertainty reduction as a number of desert 
targets

SSCC vicarious calibration harmonisation

• All MSG/SEVIRI radiometers are calibrated with respect 
to the same reference datasets

• The reference datasets are not generated consistently in 
space, time and spectrally.
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How to harmonise different calibration 
targets in a consistent and traceable 
vicarious calibration reference?



Proposed approach
Issues
• How to combine (harmonise) desert targets as a single 

calibration reference (surface and atmospheric spatial 
correlation)?

• How to combine different observations (temporal/spatial 
correlation)?

• Are there spectral correlations?

Approach
• Define correlated uncertainties between state variables;
• Propagade uncertainties accounting for these correlations.
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Propagation of uncertainties
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ICT which mean that the average of the PRT 
measurements is not representative of the observed 
radiance by the instrument. These thermal gradients 
change across the satellite orbit, particularly at points of 
the orbit where the sun shines directly onto the ICT. Note 
that there are also uncertainties associated with the ICT 
radiance due to sunlight and Earth-shine directly 
reflected off the ICT (whose emissivity is approximately 
0.985).  
 
Finally we must consider uncertainties associated with 
the assumptions and approximations built into the 
measurement equation. The measurement equation, as 
described by Eq. (1) has a quadratic form to account for 
non-linearity. We must consider whether possibly higher 
order forms would be more appropriate [5]. It also 
assumes that the gain when observing the Earth is the 
same as the gain when observing the ICT (which is why 
the ICT radiance and counts are included in the equation). 
We must consider whether this is indeed the case (such 
considerations may include instrument stability if the 
ICT measurements were less frequent than is the case 
with AVHRR, as well as issues to do with stray light 
signals from observing parts of the satellite, for example).  
 
3.3 Propagating uncertainty 

Uncertainty propagation through a measurement 
equation can be considered (Fig. 2) as the combination of 
PDFs associated with several inputs through a model to 
obtain a PDF associated with the output measurand. Note 
that in a multi-step process the output quantity of one step 
(whether of a series of measurements or a processing 
chain) becomes the input of a subsequent step.  
 

 
Figure 2 Illustrative explanation of uncertainty 
propagation 
 
There are two approximations to this that can be used for 
practical uncertainty propagation. The Law of 
Propagation of Uncertainties, as expressed in the GUM, 
summarises each input quantity PDF by an estimate of 
the input quantity and the standard uncertainty associated 
with that input. These summaries are propagated through 
a linear approximation to the measurement model to 
obtain an estimate of the output quantity along with a 
standard (or expanded) uncertainty associated with that 
value.  
 
Monte Carlo simulation [6] approximates the input error 

PDFs using a finite set of random draws from those PDFs 
and propagates the corresponding input quantity values 
through the full measurement model (equation or 
retrieval algorithm) to obtain a finite set of random draws 
from the output PDF. From statistical calculations based 
on those finite random draws, an estimate of the 
uncertainty associated with the output quantity can be 
calculated.  
 
3.4 Monte Carlo simulation of AVHRR processes 

A Monte Carlo simulation has been performed on the 
AVHRR L1 product of thermal infrared radiance (and 
hence brightness temperature) and the SSTs retrieved 
from this. This involved producing a software model of 
the different processes on board the satellite ± the 
measurements of the Earth, Space and ICT and the 
conversion from incoming radiance to digitised counts 
with added noise, and the calculation of Earth radiance 
using Eq. (1). The model included aspects such as the 
thermal gradient across the ICT and changes in this 
thermal gradient over an orbit and modelled all such 
processes using PDFs obtained from analysing real data 
from the satellites to give realistic performances. The 
Monte Carlo simulation was also able to consider the 
determination of the ai calibration coefficients from 
simulated match-up data (which also enabled an estimate 
of the correlation coefficients of these parameters).  
 
The output of this initial Monte Carlo simulation was an 
estimate of the error compared to the simulation-
SURYLGHG� µWUXWK¶� IRU� WKH� PHDVXUHG� EULJKWQHVV�
temperatures. The results of this simulation are given in 
Fig. 3 and it is easy to see that the dominance of the 
digitisation of the signal on top of a noise distribution (the 
overall envelope). There is very little systematic effect ± 
the distribution is slightly biased to warmer temperatures 
for the 200 K scenes (top panels) and slightly biased to 
cooler temperatures in the 300 K scenes (bottom panels). 
 

 
Figure 3 Traceable, simulated error distributions in 
AVHRR BTs. Top panels: scene temperature 200 K, 
bottom panels: 300 K. Left panels 11 µm channel, 
right panels: 12 µm channel. 
 

After Wolliams et al.

Following the GUM and the formalism adopted by Mittaz et al. (2019), two 
methods can be used for the propagation of uncertainties. 
• The first one is referred to as the ‘Law of Propagation of Uncertainty’ (LPU) 
• The second uncertainty propagation approach relies on Monte Carlo Methods 

(MCM). 
Surface parameters

Molecular concentration
Aerosol optical thickness
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Bright desert

Moon



Bright desert calibration reference
• Surface 

• Surface reflectance simulated with the RPV model 
𝜌! 𝑝, 𝜆 , 𝑘 𝑝, 𝜆 , 𝛺 𝑝, 𝜆 , 𝜌" 𝑝, 𝜆

• Atmosphere
• US standard vertical profile
• Rescaling of the water vapour and ozone concentration (UH2O (p,t), 

UO3(p,t))
• Sahara desert aerosol type (non spherical particles)
• Aerosol optical thickness (𝜏550 (p,t))
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r(t1,p1,𝜆1)
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r(t1,p1,𝜆1)

One observation over one target in all spectral bands:
• Spectral correlation between 
𝜌! 𝑡1, 𝑝1, 𝜆𝑖 , 𝛺 𝑡1, 𝑝1, 𝜆𝑖 , 𝑘 𝑡1, 𝑝1, 𝜆𝑖 , 𝜌" 𝑡1, 𝑝1, 𝜆𝑖

• Correlation between UH2O (p1,t1), UO3(p1,t1) (molecular 
absorption)

• Aerosol optical thickness 𝜏550 (p1,t1) : spectral correlation 
imposed by the aerosol model

r(t1,p1,𝜆2) r(t1,p1,𝜆3) r(t1,p1,𝜆4)

𝜆i



Calibration reference harmonisation
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Time series of observations over one target 
in all spectral bands:
• temporal correlation between 
𝜌! 𝑡𝑗, 𝑝1, 𝜆𝑖 , 𝛺 𝑡𝑗, 𝑝1, 𝜆𝑖 , 𝑘 𝑡𝑗, 𝑝1, 𝜆𝑖 , 𝜌" 𝑡𝑗, 𝑝1, 𝜆𝑖

• Temporal correlation between UH2O
(𝑡𝑗, p1), UO3(𝑡𝑗, p1) (molecular absorption)

• Temporal aerosol optical thickness 𝜏550
(𝑡𝑗, p1) correlation

r(t1,p1,𝜆1) r(t1,p1,𝜆2) r(t1,p1,𝜆3) r(t1,p1,𝜆4)

r(t2,p1,𝜆1) r(t2,p1,𝜆2) r(t2,p1,𝜆3) r(t2,p1,𝜆4)

r(t3,p1,𝜆1) r(t3,p1,𝜆2) r(t3,p1,𝜆3) r(t1,p1,𝜆4)

r(t4,p1,𝜆1) r(t4,p1,𝜆2) r(t4,p1,𝜆3) r(t4,p1,𝜆4)

tj

𝜆i
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Time series of observations over 
several targets in all spectral bands:
• spatial correlation between 
𝜌! 𝑡𝑗, 𝑝𝑘, 𝜆𝑖 , 𝛺 𝑡𝑗, 𝑝𝑘, 𝜆𝑖 , 𝑘 𝑡𝑗, 𝑝𝑘, 𝜆𝑖 , 𝜌" 𝑡𝑗, 𝑝𝑘, 𝜆

• Spatial correlation between UH2O
(𝑡𝑗, pk), UO3(𝑡𝑗, pk) (molecular 
absorption)

• Spatial aerosol optical thickness 𝜏550
(𝑡𝑗, pk) correlation

r(t1,p1,𝜆1) r(t1,p1,𝜆2) r(t1,p1,𝜆3) r(t1,p1,𝜆4)

r(t2,p1,𝜆1) r(t2,p1,𝜆2) r(t2,p1,𝜆3) r(t2,p1,𝜆4)

r(t3,p1,𝜆1) r(t3,p1,𝜆2) r(t3,p1,𝜆3) r(t1,p1,𝜆4)

r(t4,p1,𝜆1) r(t4,p1,𝜆2) r(t4,p1,𝜆3) r(t4,p1,𝜆4)

r(t1,p1,𝜆1) r(t1,p1,𝜆2) r(t1,p1,𝜆3) r(t1,p1,𝜆4)

r(t2,p1,𝜆1) r(t2,p1,𝜆2) r(t2,p1,𝜆3) r(t2,p1,𝜆4)

r(t3,p1,𝜆1) r(t3,p1,𝜆2) r(t3,p1,𝜆3) r(t1,p1,𝜆4)

r(t4,p1,𝜆1) r(t4,p1,𝜆2) r(t4,p1,𝜆3) r(t4,p1,𝜆4)

r(t1,p1,𝜆1) r(t1,p1,𝜆2) r(t1,p1,𝜆3) r(t1,p1,𝜆4)

r(t2,p1,𝜆1) r(t2,p1,𝜆2) r(t2,p1,𝜆3) r(t2,p1,𝜆4)

r(t3,p1,𝜆1) r(t3,p1,𝜆2) r(t3,p1,𝜆3) r(t1,p1,𝜆4)

r(t4,p1,𝜆1) r(t4,p1,𝜆2) r(t4,p1,𝜆3) r(t4,p1,𝜆4)

r(t1,p1,𝜆1) r(t1,p1,𝜆2) r(t1,p1,𝜆3) r(t1,p1,𝜆4)

r(t2,p1,𝜆1) r(t2,p1,𝜆2) r(t2,p1,𝜆3) r(t2,p1,𝜆4)

r(t3,p1,𝜆1) r(t3,p1,𝜆2) r(t3,p1,𝜆3) r(t1,p1,𝜆4)

r(t4,p1,𝜆1) r(t4,p1,𝜆2) r(t4,p1,𝜆3) r(t4,p1,𝜆4)

tj

𝜆i

pk

Vicarious calibration reference



Calibration reference harmonisation
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r(t1,p1,𝜆1) r(t1,p1,𝜆2) r(t1,p1,𝜆3) r(t1,p1,𝜆4)

r(t2,p1,𝜆1) r(t2,p1,𝜆2) r(t2,p1,𝜆3) r(t2,p1,𝜆4)

r(t3,p1,𝜆1) r(t3,p1,𝜆2) r(t3,p1,𝜆3) r(t1,p1,𝜆4)

r(t4,p1,𝜆1) r(t4,p1,𝜆2) r(t4,p1,𝜆3) r(t4,p1,𝜆4)

r(t1,p1,𝜆1) r(t1,p1,𝜆2) r(t1,p1,𝜆3) r(t1,p1,𝜆4)

r(t2,p1,𝜆1) r(t2,p1,𝜆2) r(t2,p1,𝜆3) r(t2,p1,𝜆4)

r(t3,p1,𝜆1) r(t3,p1,𝜆2) r(t3,p1,𝜆3) r(t1,p1,𝜆4)

r(t4,p1,𝜆1) r(t4,p1,𝜆2) r(t4,p1,𝜆3) r(t4,p1,𝜆4)

r(t1,p1,𝜆1) r(t1,p1,𝜆2) r(t1,p1,𝜆3) r(t1,p1,𝜆4)

r(t2,p1,𝜆1) r(t2,p1,𝜆2) r(t2,p1,𝜆3) r(t2,p1,𝜆4)

r(t3,p1,𝜆1) r(t3,p1,𝜆2) r(t3,p1,𝜆3) r(t1,p1,𝜆4)

r(t4,p1,𝜆1) r(t4,p1,𝜆2) r(t4,p1,𝜆3) r(t4,p1,𝜆4)

r(t1,p1,𝜆1) r(t1,p1,𝜆2) r(t1,p1,𝜆3) r(t1,p1,𝜆4)

r(t2,p1,𝜆1) r(t2,p1,𝜆2) r(t2,p1,𝜆3) r(t2,p1,𝜆4)

r(t3,p1,𝜆1) r(t3,p1,𝜆2) r(t3,p1,𝜆3) r(t1,p1,𝜆4)

r(t4,p1,𝜆1) r(t4,p1,𝜆2) r(t4,p1,𝜆3) r(t4,p1,𝜆4)

tj

𝜆i

pk Vicarious calibration reference

Definition of a harmonised 
calibration reference with traceable 
uncertainty propagation



Combining several targets
• Similar targets types (e.g., bright desert)

• When the same approach is used to characterise the target optical 
properties, the uncertainty correlation between the targets is very high;

• Different target types
• When the target types are different (e.g. bright desert and Rayleigh 

over open ocean), the uncertainty correlation between the targets is 
very unlikely (to the exception of atmospheric parameters). 

• Uncertainty over different targets might be correlated if the same 
model is used.

• Bright desert and moon calibration reference are completely 
uncorrelated (different state variables, different models).
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Practical example 
Let’s consider the surface parameters
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Param./ 
Symbol Unit Description Correlation Remark

Spectral Spatial Tempor.

𝜌!(𝜆) - Intensity Yes (1) Yes The parameters are weakly
correlated between
themselves. This correlation
can be neglected for spectral
bands distant of more than
500nm.

𝑘(𝜆) - Shape Yes (1) Yes
Ω(𝜆) - Forward/backward Yes (1) Yes

𝜌"(𝜆) - Hot spot Yes (1) Yes

𝑢(𝜌!(𝜆))

𝑢(𝑘 𝜆 )

u(𝛺(𝜆))

𝑢(𝜌" 𝜆 )

y = RPV(ρ! λ , k λ , Ω λ , ρ# λ )

u(𝑦)

𝒖 𝒚 = 𝒄$ ⋯ 𝒄𝒏

𝒖& 𝒙$ 𝒖 𝒙$, 𝒙& ⋯
𝒖 𝒙&, 𝒙$ 𝒖& 𝒙& ⋯

⋮ ⋮ ⋱
𝒖& 𝒙𝒏

𝒄$

⋮
𝒄𝒏



Practical example 
Example of uncertainty covariance matrix in the blue spectral region. 
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𝑼'() ρ! λ , Ω λ , k λ , ρ# λ =

0.0001347 0.0000528 0.0000191 0.0001253
0.0000528 0.0023413 0.0000032 0.0000084
0.0000191 0.0000032 0.0000983 −0.0000047
0.0001253 0.0000084 −0.0000047 0.0024824

𝑼'() ρ! λ , Ω λ , k λ , ρ# λ =

u& ρ! λ u ρ! λ , Ω λ u ρ! λ , k λ u ρ! λ , ρ# λ
u Ω λ , ρ! λ u& Ω λ u Ω λ , k λ u Ω λ , ρ# λ
u k λ , ρ! λ u k λ , Ω λ u& k λ u k λ , ρ# λ
u ρ# λ , ρ! λ u ρ# λ , Ω λ u ρ# λ , k λ u& ρ# λ

𝑹'() ρ! λ , Ω λ , k λ , ρ# λ = 

1.000 0.094 0.166 0.217
0.094 1.000 0.007 0.003
0.166 0.007 1.000 −0.009
0.217 0.003 −0.009 1.000

Correlation matrix 



Practical example 
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Surface reflectance

Spectral correlation



Covariance matrix 
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PROBA-V observation on 08/10/2014 over Libya-4 

No correlation Correlation between RPV
No spectral correlation

Full correlation



Covariance matrix 
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PROBA-V observation on 08/10/2014 over Libya-4 

No correlation Correlation between RPV
No spectral correlation

Full correlation

blue red NIR SWIR



Covariance matrix 
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PROBA-V observation on 08/10/2014 over Libya-4 

No correlation Correlation between RPV
No spectral correlation

Full correlation

blue red NIR SWIR



Covariance matrix 
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PROBA-V observation on 08/10/2014 over Libya-4 

No correlation Correlation between RPV
No spectral correlation

Full correlation

blue red NIR SWIR



Covariance matrix 
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PROBA-V observation on 08/10/2014 over Libya-4 

No correlation Correlation between RPV
No spectral correlation

Full correlation

Reference dataset uncertainty matrix



Covariance matrix 
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PROBA-V observation on 08/10/2014 over Libya-4 

No correlation Correlation between RPV
No spectral correlation

Full correlation

Reference data uncertainty matrix



Error distribution
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PROBA-V blue band, simulation of one observation over Libya-4 

No correlation Correlation between RPV
No spectral correlation

Full correlation

LPU (solid line)
MCM (histogram)



Error distribution
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PROBA-V red band, simulation of one observation over Libya-4 

No correlation Correlation between RPV
No spectral correlation

Full correlation

LPU (solid line)
MCM (histogram)



Error distribution
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PROBA-V NIR band, simulation of one observation over Libya-4 

No correlation Correlation between RPV
No spectral correlation

Full correlation

LPU (solid line)
MCM (histogram)



Error distribution
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PROBA-V SWIR band, simulation of one observation over Libya-4 

No correlation Correlation between RPV
No spectral correlation

Full correlation

LPU (solid line)
MCM (histogram)



Conclusions
• Elaboration of a harmonisation method for different vicarious 

calibration targets;
• Both Low of Propagation of Uncertainty (LPU) and Monte Carlo 

Method (MCM) provide very similar results when applied on the 
RPV model;

• MCM shows minor departure from the Gaussian distribution 
assumed in the LPU method.

• MCM is recommended for a first sensitivity analysis.
• Spectral covariance uncertainty affects adjacent spectral bands; 
• Need to be applied to all variables with correlation in all 

dimensions (spectral, temporal and spatial/targets), but only 
with MCM.

• Impact of RTM uncertainties still needs to be accounted for.
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