### GCOM-C/SGLI Lunar Calibration Evaluation

<u>Taichiro Hashiguchi</u><sup>a</sup>, Tomoyuki Urabe<sup>b</sup>, Shigemasa Ando<sup>b</sup>, Yoshihiko Okamura<sup>b</sup>, Kazuhiro Tanaka<sup>b</sup>, Arata Okuyama<sup>c</sup>



<sup>a</sup>Remote Sensing Technology Center of Japan (RESTEC)
 <sup>b</sup>Japan Aerospace Exploration Agency (JAXA)
 <sup>c</sup>Japan Meteorological Agency (JMA)

This work is based on a contract with JAXA (JX-PSPC-523224), and complies with GIRO usage policy, "Global Satellite Inter-Calibration System, GIRO and GSICS Lunar Observation Dataset Usage Policy", Version 1.0, May 2015, GSICS-RD005.

## Contents



- Introduction
  >GCOM-C/SGLI overview
  >SGLI specification
- 2. SGLI Lunar calibration
  - ➤SGLI Lunar calibration operation
  - ➤Analysis method of SGLI lunar calibration
  - Time-series trend results
  - ➢Inter-comparison of the onboard calibration
- 3. Derivation of Calibration Coefficient
  ➢ Correction of phase angle dependence
  ➢ Validation using AHI
- 4. Conclusion

## **GCOM-C** overview







ELU Electronic Unit

- GCOM-C was successfully launched on December 23, 2017 and is continuing regular observation operations.
- The various GCOM-C scientific products have been released to public since December, 2018. [Data access --> <u>https://gportal.jaxa.jp/</u>]

### Second-generation Global Imager (SGLI) Overview

Earth

View Window



Infrared Scanning Radiometer (SGLI-IRS)

- VNR-NP consists of three 24-degree-FOV telescopes configured in cross track direction to realize the wide FOV (70 degrees).
- VNR-PL has the tilting mechanism to observe around ±45 degrees in along track direction.
- The combination of the 45 degrees tilting scanning mirror and Ritchey-Chretien type telescope realize the wide 80 degrees FOV observation swath.

About 1.5m

Deep Space

Window

## **SGLI** Specification



The SGLI features are 250m (VNR-NP & SW3) and 250/500m (TIR) spatial resolution  $\geq$ and polarization/along-track slant view channels (VNR-PL), which will improve land, coastal, and aerosol observations.

250m over the Land or coastal area. and 1km over offshore

| GCOM-C SGLI    | characteristics                          |             | SGLI channels |                               |                 |                                           |           |                 |          |
|----------------|------------------------------------------|-------------|---------------|-------------------------------|-----------------|-------------------------------------------|-----------|-----------------|----------|
|                | Sun-synchronous                          |             |               | λ                             | Δλ              | L <sub>std</sub>                          | $L_{max}$ | SNR at Lstd     | IFOV     |
| Orbit          | (descending local time: 10:30)           |             |               | VNR-NP.                       | VNR-NP, VNR-PL, |                                           | VNR-PL,   | VNR-NP. VNR-PL. |          |
|                | Altitude 798km, Inclination 98.6deg      |             | СН            | CH IRS-SWI: nm<br>IRS-TIR: μm |                 | IRS-SWI<br>:W/m²/sr/µm<br>IRS-TIP: Kolvin |           | IRS-SWI : SNR   | m        |
|                |                                          |             |               |                               |                 |                                           |           | IRS-TIR: NE∆T   |          |
| Mission Life   | 5 years                                  | r r         | V/N11         | 200                           | 10              |                                           |           | 250             | 250      |
| Scan           | Push-broom electric scan (VNR)           |             |               | <u> </u>                      | 10              | 00<br>75                                  | 210       | <u> </u>        | 250      |
|                | Wisk-broom mechanical scan (IRS)         |             | VN2           | 443                           | 10              | 64                                        | 400       | 300             | 250      |
|                | 1150km cross track (VNR-NP & VNR-PL)     |             | VN4           | 490                           | 10              | 53                                        | 120       | 400             | 250      |
| Scan width     | 1400km cross track (IRS-SWI & IRS-TIR)   |             | VN5           | 530                           | 20              | 41                                        | 350       | 250             | 250      |
| Digitalization | 12hit                                    | VNR-NP-     | VN6           | 565                           | 20              | 33                                        | 90        | 400             | 250      |
| Polarization   | 2 polarization angles for V/NP-PI        | Aulti anglo | VN7           | 673.5                         | 20              | 23                                        | 62        | 400             | 250      |
| POlarization   |                                          | bs for      | VN8           | 673.5                         | 20              | 25                                        | 210       | 250             | 250      |
| Along track    | Nadir for VNR-NP, IRS-SWI and IRS-TIR,   | 673 5nm and | VN9           | 763                           | 12              | 40                                        | 350       | 1200            | 250/1000 |
| direction      | +45 deg and -45 deg for VNR-PL           | 868.5nm     | VN10          | 868.5                         | 20              | 8                                         | 30        | 400             | 250      |
|                | VNR-NP VNR-PL: Solar diffuser, LED       |             | <b>VN11</b>   | 868.5                         | 20              | 30                                        | 300       | 200             | 250      |
|                | Lupar cal maneuvers and dark             |             | P1            | 673.5                         | 20              | 25                                        | 250       | 250             | 1000     |
|                | current by masked nivels and             |             | P2            | 868.5                         | 20              | 30                                        | 300       | 250             | 1000     |
|                |                                          | l r         | SW1           | 1050                          | 20              | 57                                        | 248       | 500             | 1000     |
| On-board       | nighttime obs.                           | IRS-SW/L    | SW2           | 1380                          | 20              | 8                                         | 103       | 150             | 1000     |
| calibration    | IRS-SWI: Solar diffuser, LED, Lunar, and |             | SW3           | 1630                          | 200             | 3                                         | 50        | 57              | 250      |
|                | dark current by deep space window        | L           | SW4           | 2210                          | 50              | 1.9                                       | 20        | 211             | 1000     |
|                | IRS-TIR: Black body and dark current by  | IRS-TIR     | T1            | 10.8                          | 0.7             | 300                                       | 340       | 0.2             | 250/1000 |
|                | deep space window                        |             | T2            | 12.0                          | 0.7             | 300                                       | 340       | 0.2             | 250/1000 |

TIR: 500m resolution is also used

### Lunar Calibration Operation

- The lunar observation images are captured by maneuvering GCOM-C attitude around the pitch axis.
- ✓ Pitch maneuver rate is 0.15 degree/second with high stability to obtain precise oversampled lunar image in along-track direction.
- ✓ The phase angle(Sun Moon Satellite ) is around +7+/-3degree.
  - Lunar calibration concept is similar to SeaWiFS.



0.1498

0

200

400

600

**Days since launch** 

800

1000

1200



## Analysis Method (VNR)



#### Analysis method of SGLI lunar calibration data

[Case of VNR-NP/PL]

NP:500 line PL:125line

**Deep Space** 

NP:400 line PL:100line

Integrated Area\*

NP:160 pixel

PL: 30pixel

✓ Removes dark noise using averaging deep space data per pixel.

- ✓ Converts to radiance image  $L_{k,p}$  using radiometric parameter.
- ✓ To compare with lunar irradiance model, the radiance is converted to integrated lunar irradiance  $I_k$  using following equation.

$$I_k^{SGLI} = \left(\sum_{p=1}^N \Omega'_{k,p} L_{k,p}\right)$$

 $I_k$ : Lunar irradiance (k=ch1~11) N : Total number of pixel  $\Omega'_{k,p}$ : Solid angle per pixel include oversampling and sin  $\theta$  effect

 $\theta$  : Angle between satellite-moon vector and satellite pitch axis

#### Deep Space

NP:500 line

PL:125line

\*Integrated area is defined taking into account stray light.

## Analysis Method (IRS)



#### Analysis method of SGLI lunar calibration data

#### [Case of IRS-SWIR]

IRS discretely captures the moon because of whisk-broom type radiometer. Therefore, in order to obtain integrated lunar irradiance, it is necessary to round the lunar image.



- ✓ Converts to radiance image  $L_{k,p}$  using radiometric parameter.
- ✓ The observed pixels of each detector are projected on the AT-CT plane in consideration of line-of-sight vector and the pitch maneuver.
- ✓ Converts to irradiance image  $I_{k,p}$  using the solid angle for each pixel.
- ✓ Reconstructs the lunar irradiance image from the weighted average according to the a field of view of each detector in the resampling grid.
  ✓ The lunar integrated irradiance I<sub>k</sub><sup>SGLI</sup> is calculated.



Red line: Resampling grid

XColors show the observed pixel of each scan





Green : Weighted average pixel

8

# Time-series trend results(VNR)



## Time-series trend results(SWIR)



### Inter-comparison of the onboard calibration

#### □ Inter-comparison of the onboard calibration

- ✓ Lunar calibration
- ✓ Solar calibration (every 8 days)
- ✓ Internal light source calibration (every 8 days)

![](_page_10_Figure_5.jpeg)

- ✓ These trends are normalized with the first lunar calibration date (February 1, 2018) for comparison.
- In VNIR and SWIR bands, the inter-comparisons between in orbit calibrations are consistent within 1.0%, and these results suggest that the lunar calibration evaluation acquires the degradation characteristics of the sensor in detail.

### Derivation of Calibration Coefficient

![](_page_11_Picture_1.jpeg)

- Derivation of calibration coefficient
  - ✓ The SGLI/GIRO trends have a feature of phase angle dependence.
  - ✓ For the construction of the simple study model, the conditions for evaluation are limited to the following:
    - $\succ$  The roll offset angle is 0° or 1°
    - $\blacktriangleright$  The phase angle range is 5.0° to 11.0°
  - Using the simple model shown below, the sensor responsivity degradation and phase angle dependence were separated by multiple regression analysis.

$$f_{ch,n} = a_{ch} \times g_n + b_{ch} \times d_n + c_{ch}$$

- *f* : the SGLI/GIRO trend
- g : the phase angle
- d : the days since launch
- n : the number of the lunar calibration
- $a_{ch}$ : the phase angle dependent coefficient
- $b_{ch}$ : the sensor degradation coefficient

*c<sub>ch</sub>: the constant* 

VN01-VN06 Nadir telescope

![](_page_11_Figure_17.jpeg)

Confirmation that these characteristics do not depend on the evaluation period.

I. 2018/2-2020/1

II. 2018/10-2020/9

![](_page_11_Figure_21.jpeg)

## Derivation of Calibration Coefficien

![](_page_12_Figure_1.jpeg)

- ✓ The phase angle dependence at wavelengths longer than VN07(673.5 nm) is statistically significant.
- ✓ The dependency increases as the wavelength increases. In particular, the dependence is strong in the SWIR bands.

|      | 1st evaluation period |        |                        |                                                                                          |           |                     |       | 2nd evaluation period |                                          |          |                                      |          |    |
|------|-----------------------|--------|------------------------|------------------------------------------------------------------------------------------|-----------|---------------------|-------|-----------------------|------------------------------------------|----------|--------------------------------------|----------|----|
| Band | R2                    | RMSE   | Sensor de<br>dependenc | Sensor degradation      Phase angle dependence        dependence [1/day]      [1/degree] |           | dependence<br>gree] | R2    | RMSE                  | Sensor degradation<br>dependence [1/day] |          | Phase angle dependence<br>[1/degree] |          |    |
|      |                       |        | slope                  | p-value                                                                                  | slope     | p-value             |       |                       | slope                                    | p-value  | slope                                | p-value  |    |
| VN01 | 0.954                 | 0.0031 | -6.78E-05              | 2.54E-12                                                                                 | 1.08E-03  | 7.67E-02            | 0.962 | 0.0028                | -7.30E-05                                | 4.33E-13 | 5.46E-04                             | 2.93E-01 |    |
| VN02 | 0.982                 | 0.0018 | -6.64E-05              | 3.19E-16                                                                                 | 5.28E-04  | 1.32E-01            | 0.962 | 0.0025                | -6.59E-05                                | 3.98E-13 | -7.39E-05                            | 8.72E-01 | 1  |
| VN03 | 0.975                 | 0.0020 | -6.24E-05              | 3.31E-15                                                                                 | -2.54E-04 | 4.89E-01            | 0.985 | 0.0014                | -5.91E-05                                | 2.23E-16 | -7.49E-05                            | 7.69E-01 | 1  |
| VN04 | 0.989                 | 0.0011 | -5.51E-05              | 2.23E-18                                                                                 | -1.82E-04 | 3.96E-01            | 0.991 | 0.0010                | -5.38E-05                                | 2.86E-18 | -1.83E-04                            | 3.06E-01 | 1  |
| VN05 | 0.973                 | 0.0016 | -4.63E-05              | 7.48E-15                                                                                 | -4.65E-05 | 8.70E-01            | 0.982 | 0.0013                | -4.86E-05                                | 9.43E-16 | -1.81E-04                            | 4.35E-01 | 1  |
| VN06 | 0.970                 | 0.0012 | -3.29E-05              | 2.29E-14                                                                                 | -1.83E-05 | 9.32E-01            | 0.971 | 0.0011                | -3.42E-05                                | 4.31E-14 | -1.54E-04                            | 4.60E-01 | 1  |
| VN07 | 0.591                 | 0.0016 | -5.32E-06              | 2.05E-02                                                                                 | 8.58E-04  | 8.84E-03            | 0.656 | 0.0015                | -9.96E-06                                | 7.96E-05 | 6.06E-04                             | 4.24E-02 | 1  |
| VN08 | 0.625                 | 0.0015 | -4.61E-06              | 3.04E-02                                                                                 | 9.55E-04  | 2.64E-03            | 0.509 | 0.0022                | -1.07E-05                                | 1.13E-03 | 6.48E-04                             | 1.18E-01 | 1  |
| VN09 | 0.459                 | 0.0017 | 1.67E-07               | 9.42E-01                                                                                 | 1.20E-03  | 1.39E-03            | 0.548 | 0.0020                | -7.76E-06                                | 5.54E-03 | 1.12E-03                             | 5.58E-03 | 1  |
| VN10 | 0.538                 | 0.0021 | 1.60E-06               | 5.34E-01                                                                                 | 1.63E-03  | 2.18E-04            | 0.615 | 0.0020                | -8.84E-06                                | 2.65E-03 | 1.34E-03                             | 1.85E-03 | 1  |
| VN11 | 0.550                 | 0.0020 | 1.70E-06               | 4.81E-01                                                                                 | 1.56E-03  | 1.65E-04            | 0.601 | 0.0020                | -4.85E-06                                | 6.32E-02 | 1.65E-03                             | 2.48E-04 | 1  |
| SW01 | 0.944                 | 0.0025 | -4.54E-05              | 7.26E-11                                                                                 | 1.75E-03  | 1.55E-03            | 0.925 | 0.0024                | -3.89E-05                                | 1.05E-10 | 1.73E-03                             | 6.68E-04 | 1  |
| SW02 | 0.961                 | 0.0031 | -6.40E-05              | 1.12E-11                                                                                 | 3.62E-03  | 8.90E-06            | 0.935 | 0.0034                | -5.55E-05                                | 1.13E-10 | 3.97E-03                             | 4.08E-06 | 1  |
| SW03 | 0.917                 | 0.0019 | -5.24E-06              | 6.18E-02                                                                                 | 4.30E-03  | 7.53E-10            | 0.883 | 0.0023                | -1.05E-05                                | 1.24E-03 | 4.25E-03                             | 6.89E-09 | 13 |
| SW04 | 0.913                 | 0.0027 | 2.80E-06               | 4.67E-01                                                                                 | 6.76E-03  | 1.68E-10            | 0.884 | 0.0034                | -1.10E-05                                | 1.35E-02 | 6.61E-03                             | 3.01E-09 | ]  |

## Derivation of Calibration Coefficien

#### □ SGLI/GIRO residual from multiple regression equation

![](_page_13_Figure_2.jpeg)

![](_page_13_Figure_3.jpeg)

- ✓ The residuals of the regression equation tend to annual variation.
  - This may suggest the effect of libration.

-**-** VN08

•**±**••VN09

-VN10

-+- VN11

### Validation using AHI

![](_page_14_Picture_1.jpeg)

- □ Inter-comparison of SGLI and Himawari8-AHI using GIRO
  - ✓ Inter-comparison of AHI/GIRO and SGLI/GIRO of almost the same observation conditions (obs. time and geometry)
  - $\checkmark\,$  The following differences are corrected by GIRO
    - Geometric conditions (phase angle, libration, sun-moon / moon-satellite distance)

Ra

- Spectral response function of AHI and SGLI
- $\checkmark\,$  Comparison of SGLI/GIRO and AHI/GIRO
  - 2 cases with almost the same phase angle

| AHI                                  | B01   | B02   | B03   | B04   | B05   | B06   |
|--------------------------------------|-------|-------|-------|-------|-------|-------|
| Wavelength [nm]                      | 470   | 510   | 640   | 860   | 1600  | 2300  |
| SGLI                                 | VN04  | VN05  | VN08  | VN11  | SW03  | SW04  |
| Wavelength [nm]                      | 490   | 530   | 673.5 | 868.5 | 1630  | 2210  |
| tio SGLI to AHI of lunar irradiance* | 1.011 | 0.983 | 1.025 | 1.014 | 1.037 | 0.927 |
|                                      |       |       |       |       |       |       |

| Case |      | date           | nhase angle | selenographic         | selenographic          | selenographic   | selenographic    | dist sat moon | dist_sun_moon |
|------|------|----------------|-------------|-----------------------|------------------------|-----------------|------------------|---------------|---------------|
|      |      | date           | phase_angle | latitude of satellite | longitude of satellite | latitude of sun | longitude of sun |               |               |
|      | SGLI | 2019/2/20 3:16 | 8.255       | -4.796                | 1.928                  | -0.914          | -5.368           | 351544        | 0.991         |
| Û    | AHI  | 2019/2/20 3:40 | 8.262       | -3.579                | 2.260                  | -0.914          | -5.567           | 398634        | 0.991         |
| 0    | SGLI | 2019/4/20 0:27 | 9.342       | -6.602                | 5.118                  | -1.525          | -2.746           | 364414        | 1.007         |
| (2)  | AHI  | 2019/4/20 3:00 | 9.792       | -7.067                | 4.061                  | -1.524          | -4.038           | 412584        | 1.007         |

![](_page_14_Figure_11.jpeg)

|          | B01 | B02 | B03 | B04 | B05 | B06       |
|----------|-----|-----|-----|-----|-----|-----------|
| AHI/SGLI | 11% | 7%  | 11% | 12% | 21% | <i>5%</i> |

- AHI results are about 5-20% larger than SGLI.
  - These results may be include calculation errors of the solid angle and oversampling factor etc.

### Validation using AHI

![](_page_15_Picture_1.jpeg)

□ Validation of phase angle dependence correction using AHI/GIRO trend

✓ AHI/GIRO trend (2019)

![](_page_15_Figure_3.jpeg)

![](_page_15_Figure_4.jpeg)

### Validation using AHI

![](_page_16_Figure_1.jpeg)

Wavelength [nm]

17

factors of about 3% {=0.006 x (10-5) @ SW04} in the SWIR.

 $\geq$ 

OBS/GIRO

 $\geq$ 

## Conclusion

![](_page_17_Picture_1.jpeg)

#### Conclusion

- ✓ GCOM-C/SGLI continuously observes the moon since the launch , we evaluate the lunar calibration trend using GIRO.
  - These trends show similar trends to other onboard calibrations, suggest that the lunar calibration evaluation acquires the degradation characteristics of the sensor in detail.
  - Similar to the heritage instruments, the OBS / GIRO trend shows phase angle dependence, especially at SWIR band.
- ✓ A simple model was constructed to extract the sensor responsivity degradation from OBS/GIRO trend.
  - As a result, it was confirmed that the phase angle dependence increases as the wavelength increases.
  - These phase angle dependences were verified using AHI/GIRO trend.
  - These results suggest that phase angle dependence corrections are useful for lunar calibration evaluation using GIRO of other sensors observing at the phase angle range of 5-10 degrees.

#### **D** Future plan

✓ These results will be periodically reflected as the radiometric calibration coefficients for the ground processing system.