3rd Joint GSICS/IVOS Lunar Calibration Workshop Nov. 17, 2020

Lunar calibration for a multi-band sensor onboard **RISESAT** and its validation activity with LANDSAT-8 data

Masataka Imai¹, Toru Kouyama¹, Junichi Kurihara², Toshinori Kuwahara³, Shinya Fujita³, Yuji Sakamoto³, Sei-Ichi Saitoh², Takafumi Hirata², Yukihiro Takahashi²

¹ National Institute of Advanced Industrial Science and Technology, ² Hokkaido University, ³ Tohoku University

Introduction

- true performance and to maintain compatibility with other remote-sensing data.
- convenient and reliable Lunar calibration method, especially for micro-satellites.

Recover the original performance!

radiometric standard = Lunar Calibration

Degradation

Launch impact

Radiometric calibration is strongly desired during the operation in space to evaluate the

• We developed the SP model (Spectrum Profiler onboard SELENE) and try to establish a

Moon observation with RISESAT/OOC

- Lunar Calibration by using ROLO and SP models are in progress for the Ocean Observation Camera (OOC) onboard RISESAT micro-satellite.
- Our target is to achieve multi-band imaging with < 1% precision for investigating the abundance of chlorophyll and the Colored Dissolved Organic Matter.
- RISESAT/OOC monthly observes the Moon from August 2019 when the absolute phase angle was about 10° (± 2.5°) to get the highest SN ratio avoiding the opposition surge.

RISESAT	Mass	59.3 kg
	Size	50 cm cube
	Developer	Tohoku and Hokkaido Univ., Japar
	Orbit	Sun-synchronous orbit with 500 km a ~1.5 hour period
000	Focal length	50 mm
	Spectral bands	405, 490, 555, 869 nm (FWHM ~10 n
	Imaging size	659 x 494 pixels
	FOV	5.6 x 4.2 deg (48 x 36 km at nadiar)
	Spatial resolution	74 m at nadiar
	Quantization	10 bit

Results 1: Temporal changes in the Moon irradiance

- reason could be the instrument temperature variation.
- Using both positive and negative phase angles should be a minor impact.
- The difference between the ROLO and SP is ~1%. which is reasonable considering 1% of inclusive modeled irradiance errors.

Results 2: Inter-band ratio

- By comparing the observation and simulation, the discrepancy of the current band-toband ratio against the pre-launch calibration can be tested.
- While OOC's sensitivity degradation is small, the launch impact and the severe environment might alter the inter-band ratio.
- Revealed bluing trend must be critical for OOC's science targets.
- After the validation, OOC's Moon observations can contribute to prepare re-calibration data.

Discussion 1-1: Sensor sensitivity degradation

- Although, rather small temporal changes can be confirmed in the Moon
- Similar dependence was confirmed by the inflight calibration of Hayabusa-2's optical navigation camera.

Table 3.8

Sensitivity dependence from CCD temperature for all band-passfilters. The errors cited are the $2-\sigma$ errors.

Band	<i>a_{CCD, n}</i> [∕°C]	
ul (0.40 µm)	-0.001449 ± 0.000244	
b (0.48 μm)	-0.000968 ± 0.000108	
v (0.55 µm)	-0.000814 ± 0.000090	
Na (0.59 µm)	-0.000866 ± 0.000154	
w (0.70 μm)	-0.000355 ± 0.000112	
x (0.86 µm)	0.001771 ± 0.000158	
p (0.95 µm)	0.004201 ± 0.000202	

[Tatsumi et al., 2019]

irradiance ratio, the instrument temperature might affect the sensor sensitivity.

Discussion 1-2: Sensor sensitivity degradation

- the account, OOC's 1.10 sensitivity degradation might be < 1 %.

Discussion 1-2: Sensor sensitivity degradation

- the account, OOC's 1.10 sensitivity degradation might be < 1 %.
- Further moon • observations over the wide temperature range could provide the detail effect of temperature variation.

Discussion 2: Validation of inter-band ratio Railroad Valley The confirmed OOC's bluing trend is under investigation

- by the cross-calibration with LANDSAT-8.
- Our preliminary result of Railroad Valley observation is not ideal to validate the measured discrepancy, and further observation will be conducted Nov 17.

Summary and Future work

- Our RISESAT/OOC experiments demonstrated the Moon observation can provide a discrepancy in the inter-band ratio.
- restrictions.
- To achieve the precise calibration (< 1%), sensitivity dependence on the sensor remote-sensing.
- Further validation of our Lunar Calibration is on going by using the inter-satellite comparison result with LANDSAT-8.
- Our next step is establishing the calibration method among the instruments (OOC and other on-boards) and inter-satellite comparison.

convenient method to investigate the sensor degradation with at least ~1% accuracy and

• The lunar calibration can be a promising candidate for a common radiometric calibration method among hundreds of nano/micro-satellites, which usually have strict weight and cost

temperature must be critical, and our experiment indicates the importance of measuring the sensor temperature and pre-launch experiment is important even for the micro-satellite

