

LUNAR CALIBRATION A new method for the PLEIADES radiometric absolute calibration

Sophie Lachérade CNES

18/12/2012

The PLEIADES system

2 satellites – Swath : 20km

Nadir ground resolution: 0.70 m in the panchromatic band 2.80 m in the multispectral bands

The PLEIADES system

System with a very high level of agility !

The PLEIADES system

Exemple of video over Melbourne (Australia)

Goal: radiometric absolute calibration better than 5%

Methods:

Lunar calibration is a multi-temporal calibration method

 \rightarrow Regular acquisition of the moon – fixed phase of ±40° every month 2 views per day to allow stereoscopic acquisitions

* H.H. Kieffer, T.C. Stone, R.A. Barnes, S. Bender, R.E. Eplee, J. Mendenhall, L. Ong On-orbit radiometric calibration over time and between spacecraft using the moon SPIE 4881, pp. 287-298, 2003.

Focus on the LUNAR acquisitions

\rightarrow Multi-temporal calibration based on Moon with a phase of 40°

BUT how to explain the dispersion of the lunar acquisitions (±4%)?

→ Decision to enlarge the moon acquisitions to cover the entire Moon cycle (from -115° to 115°) to better understand the method

\rightarrow 138 images acquired by PLEIADES1A since its launch (12/2011)

Focus on the LUNAR acquisitions

 \rightarrow Evolution of the moon with the phase

Movie "Moon_PHR1A_April.exe"

Influence of the phase on the calibration results

 \rightarrow Sensitivity of the method with the phase of the moon

Analysis in progress

- Use of PLEIADES_1B satellite launched two weeks ago to perform two acquisitions per day per cycle from -115° to 115° dur ing the commissioning phase
 - \rightarrow to be able to better understand the influence of the phase and maybe to better modelise it
 - \rightarrow to analyse the impact of the sensor geometry on the calibration results (the yaw angle is not constraint) impact on the resampling ?

- Cross-calibration of PLEIADES_1B with PLEIADES_1A on the moon

