AMSR2 calibration/characterization

- Performance evaluation and characterization
 - Radiometer sensitivity, gain stability, and parameter optimization.
 - Characterization such as scan biases and RFI condition.
- Radiometric calibration
 - Calibration data quality assessment and prescreening.
 - Deep space calibration maneuver was cancelled to avoid potential RFI damages to receivers.
 - Intercalibration with:
 - Non-sun-synchronous TRMM/TMI, and with polar orbiting radiometers through TMI as a on-orbit transfer radiometer.
 - AMSR-E past records and slow rotation mode data.
 - Polar orbiting radiometers over polar regions.
 - Computed brightness temperatures using global objective analysis data and radiative transfer models.
- Geometric calibration
 - Assessment of geometric errors and determination of geometric calibration coefficients such as sensor alignment offsets.

Status of AMSR2 intercalibration

- Brightness temperatures (Tbs) of AMSR2 (Version 1.1) were intercalibrated with those of TMI and AMSR-E.
- Differences were found between the calibration of AMSR2 and TMI/AMSR-E. The differences seem to be Tb-dependent.
- Intercalibration coefficients (slope and intercept) were derived to compensate the calibration differences.

* Note that these coefficients are just to cancel out calibration differences. Differences originated from instrument's characteristics (e.g., center frequency and incidence angle) should be handled by users.

- Investigation of the causes of the calibration differences are underway.
- Further intercalibrations are in progress, including comparison with polar orbiting radiometers through TMI or by polar region match-ups, and direct comparison with AMSR-E Tbs obtained by slow rotation observation (from December 2012).

TMI intercalibration: Method

- TMI intercalibration
 - Create collocation dataset from AMSR2 and TMI (15 minutes and 0.1 degrees grid).
 - Compute differences between observed- and calculated-Tb (O-C) for both AMSR2 and TMI, over rainforest and cloud-free/calm ocean areas. Global analysis data and RTM are used to derive calculated-Tbs.
 - Further create "double difference" to cancel out the differences in frequency and incidence angle: AMSR2(O-C) – TMI(O-C).

Tb-dependent calibration differences

4

Trend of the calibration differences

4

ŝ

0

07/2012

11/2012

0

07/2012

11/2012

ASC

03/2013

ASC

DSC

03/2013

AMSR2(O-C)

Consistency among methodologies

 Calibration differences between AMSR2 and AMSR-E show (almost) consistent values between two approaches.

> AMSR2 2012(O-C) – AMSRE 2011(O-C)

DD(AMSR2-TMI) – DD(AMSRE-TMI)

Direct comparison with AMSR-E

- Orbits and frequency channel sets are almost identical: no corrections are needed for center frequency, incidence angle, and observing local time. It enables cross calibration in wide range of Tbs over land, ice, and ocean.
- AMSR-E observations resumed from December 4, 2012 with 2rpm rotation speed. Geolocation and Tbs are computed by modified software.
- Observation is sparse, but reasonable for global-scale comparison.
- Calibration improvement of 2rpm mode data is underway.

AMSR2 23V Descending

AMSR-E 2rpm 23V Descending

GCOM-W1 Data Providing Service

- https://gcom-w1.jaxa.jp/
- Standard products of AMSR2, AMSR-E, and AMSR.
- AMSR2 brightness temperatures and geophysical parameters were already released in January and May 2013, respectively.

Backup Slides

AMSR2 instrument

- ✓ Successor of AMSR-E on Aqua and AMSR on ADEOS-II.
- ✓ Deployable main reflector system with 2.0m diameter (1.6m for AMSR-E).
- ✓ Frequency channel set is identical to that of AMSR-E except 7.3GHz channel for RFI mitigation.
- ✓ Two-point external calibration with improved HTS (hot-load).
- ✓ Add a redundant momentum wheel to increase reliability.

GCOM-W1/AMSR2 characteristics		AMSR2 Channel Set				
Scan and rate	Conical scan at 40 rpm	Center Freq. [GHz]	Band width [MHz]	Pol.	Beam width [deg] (Ground res. [km])	Sampling interval [km]
Antenna	Offset parabola with 2.0m dia.	6.925/ 7.3	350	V and H	1.8 (35 x 62)	10
Swath width	1450km (effective > 1600km)					
Incidence angle	Nominal 55 degrees	10.65	100		1.2 (24 x 42)	
Digitization	12bits	18.7	200		0.65 (14 x 22)	
Dynamic range	2.7-340K	23.8	400		0.75 (15 x 26)	
Polarization	Vertical and horizontal	36.5	1000		0.35 (7 x 12)	
		89.0	3000		0.15 (3 x 5)	5

10