Solar Reference Spectra and Their Use

Matthew DeLand
Science Systems and Applications, Inc. (SSAI)
Lanham, Maryland USA

GRWG Meeting – UV Subgroup
Darmstadt, GERMANY 27 March 2014
Introduction

- Solar irradiance is primary energy source for terrestrial system.
- Important to know absolute value and relative variations, for both integrated measurement and spectral dependence.
- Sun represents a valuable calibration source for satellite instruments:
 - Easy access
 - High intensity
 - Relatively stable compared to on-board sources
 - Many spectral features for wavelength calibration
- Some “features” also represent challenges for operational use:
 - Exposure-dependent degradation (particularly in UV)
 - Large dynamic range needed to co-exist with Earth view data
 - Natural variability in UV region
 - Complex spectral structure
- This presentation will briefly discuss some issues associated with using reference solar spectra.
Reference Spectra - Comments

• No single instrument measures all spectral regions of interest (X-ray, UV, visible, IR) simultaneously. Thus, any “reference” spectrum is likely to be a composite of measurements from multiple instruments, using different bandpasses, probably taken at different times.

• Some reference spectra are constructed using measurements from one data set, but adjusted radiometrically through comparisons with another data set.

• Differences in spectral resolution are particularly important in the UV, where many Fraunhofer lines occur. The definition of “high” resolution can depend on the requirements of the user.

• Frequent sampling in the data set may not equal high spectral resolution. Check the background story before using the data.
Reference Spectra - 1

• **KNMI** [Dobber et al., 2008].
 – Covers 250-550 nm.
 – Original data have very high resolution ($\Delta \lambda = 0.025, 0.005$ nm).
 – Convolve with 0.025 nm bandpass, sample at 0.01 nm.
 – Adjust radiometric calibration to match lower resolution reference spectrum (average of UARS SUSIM data).

• **SAO** [Chance and Kurucz, 2010].
 – Covers 200-1001 nm.
 – Convolve with 0.04 nm bandpass, sample at 0.01 nm.
 – Adjust radiometric calibration to match lower resolution reference spectrum (*Thuillier et al.*).
Reference Spectra - 2

- **ATLAS-1, ATLAS-3** [Thuillier et al., 2004].
 - Covers 0.5-2400 nm.
 - Rocket data (1994) for 0.5-120 nm; UARS SUSIM and SOLSTICE for 120-200 nm; UARS SUSIM and SOLSTICE, ATLAS SUSIM, SSBUV, SOLSPEC for 200-400 nm; SOLSPEC for 400-870 nm; SOSP for 870-2400 nm.
 - UV: Smooth to 0.25 nm resolution, sample at 0.05 nm; Visible: resolution = 0.5 nm, sampling = 0.2-0.6 nm.
 - Average individual data sets together where available.
 - Each reference spectrum represents single date.

- **WHI (Whole Heliospheric Interval) 2008** [Woods et al., 2009].
 - Covers 0.1-2400 nm.
 - Rocket EVE + TIMED SEE for 0.1-120 nm; SORCE SOLSTICE for 120-310 nm; SORCE SIM for 310-2400 nm.
 - Resolution = 0.1 nm in UV, ~1.5-30 nm from near-UV to near-IR. Sampling = 0.1 nm throughout.
 - Each reference spectrum represents narrow range of dates (~1 week).
 - Reference spectra scaled to TIM TSI values.
Resolution and Sampling

- Same spectral region (300-320 nm) and absolute scale used for all panels in this figure.
- Effect of bandpass change between KNMI and SAO is apparent, even with same input data set.
- Satellite measurements (bottom two panels) have lower resolution.
- WHI spectrum shows change in original instrument resolution when SIM data begin at 310 nm.
Absolute Difference - 1

- Comparisons at higher resolution are very sensitive to convolution method, intensity at peaks of spectral features, accuracy of wavelength scales.
- Smoothing to lower resolution necessary to evaluate radiometric differences.

Irradiance data

Ratio: $\Delta \lambda = 0.5$ nm

Ratio: $\Delta \lambda = 20$ nm
Absolute Difference - 2

- Smoothing irradiance data to lower resolution necessary to evaluate radiometric differences.
- Some comparisons still show differences that exceed quoted uncertainties.

SORCE SOLSTICE vs. UARS SUSIM, SOLSTICE

Woods et al. [2009]
Solar Activity

• Solar irradiance shortward of 300 nm varies on short-term (~27-day) and long-term (~11-year) time scales.
• Longward of 300 nm, only Fraunhofer lines show variations exceeding ~0.5% (magnitude of variability is resolution-dependent).
• Spectral dependence of solar variations appears to be very consistent for both short and long time scales.
• Therefore, we can use solar UV activity proxy (e.g. Mg II index) and wavelength-dependent “scaling factors” to estimate irradiance change with time.
Solar Cycle Variations

- Spectral dependence shows distinct features due to atomic species in Sun.
- Variations generally less than 1% beyond ~ 300 nm.
- Good agreement between data sets from two solar cycles, semi-empirical model.

DeLand and Cebula [2012]
Solar Variations – UV, Visible

- Better OMI instrument resolution (0.4 nm) shows small features at Fraunhofer lines.
- Generally very good agreement between long-term changes (red) and short-term changes (black).

Adapted from Marchenko and DeLand [submitted to Ap. J., 2014]
Solar Variations – Resolution

- Short-term variations during Cycle 24 calculated using same dates for both instruments.
- Larger variations observed at major lines for GOME-2 (blue, $\Delta \lambda = 0.2$ nm) than for OMI (black, $\Delta \lambda = 0.4$ nm).
Solar UV Proxy

- Numerous data sets are available, with similar overall behavior.
- Mg II index has best physical connection to UV irradiance.
- Be aware of resolution (see next slide).

DeLand and Cebula [2012]
Mg II Index - Resolution

Figure courtesy of Marty Snow, 2014 SORCE Meeting
Scaling Factors

- Calculate max/min ratio for irradiance over solar rotation to minimize sensitivity change effects.
- Calculate ratio for same dates with Mg II index.
- Slope of linear regression fit gives “scaling factor”. Good dynamic range is preferred.
- Value of scaling factor at any wavelength depends on instrument resolution for both irradiance and proxy.
Proxy Results

Solar Irradiance Comparison: 200–207 nm
NOAA-9 SBUV/2 Irradiance Data

Abs. shift = −0.9%

Calculated Irradiance Variation [NOAA SEC Mg II index + scale factors]

Average scale factor = 1.049

DIFFERENCE: NOAA-9 SBUV/2 − Calculated Solar Variation

5-day running avg.
Conclusions

• Many high resolution reference solar spectra have been constructed for different purposes.
• Understanding how a reference spectrum was created helps to make it more useful.
• At wavelengths shorter than 300 nm, natural solar variations should also be considered for best results.
• Mg II proxy index can be used with (instrument-dependent) scaling factors to determine adjustments as a function of wavelength and time.
References

Backup Figures
OMI Irradiance Time Series

- Solar cycle variations derived from OMI irradiance measurements.
- Analysis benefited from location of data set in solar cycle, well-behaved instrument, hyperspectral data.
- Still required monthly averages to get useful results at longer wavelengths.

Marchenko and DeLand [2014]