

Inter-calibrating SAPHIR and ATMS observations

Isaac Moradi¹, Ralph Ferraro²

ESSIC, University of Maryland
STAR/NESIDS, NOAA

Validating ATMS and SAPHIR Observations

Isaac Moradi, ESSIC, University of Maryland

Megha-Tropiques

- □ A microwave imager (MADRAS) to study precipitation and cloud properties (SSM/I type, with an additional channel at 157 GHz).
- A microwave sounding instrument for the atmospheric water vapor (SAPHIR - 6 channels in the 183 GHz band).
- A radiometer for measuring outgoing radiative fluxes at the top of the atmosphere (ScaRaB).

Isaac Moradi, ESSIC, University of Maryland

SAPHIR vs. ATMS

SAPHIR vs. ATMS

Freq ATMS	Freq SAPHIR	Bias (Obs)	Bias (Sim)	Obs – Sim
183±7.0	183±6.8	-0.66	-0.42	-0.24
183 ± 4.5	183±4.2	-1.51	-0.91	-0.6
183±3.0	183±2.8	-1.25	-0.93	-0.32
183±1.0	183±1.1	0.52	0.90	-0.38

Isaac Moradi, ESSIC, University of Maryland

ATMS Weighting Functions

ATMS Weighting Functions

ARM Stations

Comparing upper tropospheric humidity data from microwave satellite instruments and tropical radiosondes

Journal of Geophysical Research: Atmospheres

Volume 115, Issue D24, D24310, 24 DEC 2010 DOI: 10.1029/2010JD013962 http://onlinelibrary.wiley.com/doi/10.1029/2010JD013962/full#jgrd16419-fig-0001

Isaac Moradi, ESSIC, University of Maryland

Validating Using ARM Data

Isaac Moradi, ESSIC, University of Maryland

Only Vaisala

-1 -1 -2 -2

CGTS China

India

+

-8

-5

-6

-7

Isaac Moradi, ESSIC, University of Maryland

GPS Radio Occultation Data

□Radio signals transmitted by Global Positioning System (GPS) satellites are received by a receiver on a LEO satellite

□Temperature and water vapor profiles are derived from bending angles using a-priori profiles and inversion techniques

□Raw GPS-RO data (time delay) have very high accuracy in the upper troposphere and lower stratosphere (500 hPa to 40 km) but different

□errors and uncertainties are introduced during inversion to the atmospheric state variables

Drift in GPS Profiles

Isaac Moradi, ESSIC, University of Maryland

Questions?

Isaac Moradi, ESSIC, University of Maryland