

Status of MODIS and VIIRS Instruments

Xiaoxiong (Jack) Xiong

NASA/GSFC, Greenbelt, MD 20771, USA

Acknowledgements:

MODIS Characterization Support Team (MCST) VIIRS Characterization Support Team (VCST)

GSICS Joint Meeting on Research and Data Working Groups, 16-20 March 2015, Delhi, India

Outline

- MODIS and VIIRS Instruments
- On-orbit Calibration and Characterization
- Performance (reflective solar bands)
- Status of MODIS and VIIRS L1B Data Products
- Challenging Issues and Future Efforts

• L8 OLI Calibration Activities and Status

MODIS and VIIRS Instruments

MODIS on both Terra and Aqua

- Terra: Dec. 18, 1999 Present
- Aqua: May 04, 2002 Present

VIIRS on S-NPP and JPSS

- Suomi NPP: Oct. 28, 2011 Present
- J1: Launch in late 2016 or early 2017 (ready for S/C environment testing)
- J2: Launch in 2020
- J3 and J4: TBD

Calibration Effort (Pre-launch and On-orbit) MCST and VCST at NASA GSFC

Key Design Features

MODIS

- <u>Purpose</u>: Global observations of land, ocean, & atmosphere parameters at high temporal resolution (< 2 days)
- 2-sided scan mirror
- <u>Spectral range</u>: 36 bands between 0.4 μm and 14.5 μm
 - 20 RSB and 16 thermal emissive bands (TEB)
- Focal plane assemblies (FPA): VIS, NIR, SMIR, and LWIR
- <u>Spatial resolution:</u> 250, 500, 1000 m
- Swath Width: 2230 km
- On-board Calibrators: SD, SDSM, BB, SV, and SRCA
- SD aperture door

<u>VIIRS</u>

- <u>Purpose</u>: Global observations of land, ocean, & atmosphere parameters at high temporal resolution (daily)
- Rotating telescope plus HAM
- <u>Spectral range</u>: 22 bands between 0.4 μm and 12.5 μm
 - 14 RSB, 7 TEB, and 1 Day Night Band (DNB)
- Focal plane assemblies (FPA): VIS/NIR, SMIR, and LWIR
- Spatial resolution: 375 and 750 m
- Swath Width: 3000 km
- On-board Calibrators: SD, SDSM, BB, SV,
- Pixel aggregations and bowtie deletion

Nearly 40 science data products from MODIS and 22 EDRs from VIIRS

Spectral Bands

					/	0	
		HSR	Range	MODIS Band(s)	Nadir HSR (m)	Spectral Range (um)	VIIRS Band
1 DNB						0.500 - 0.900	DNB
		1000	0.405 - 0.420	8	750	0.402 - 0.422	M1
		1000	0.438 - 0.448	9	750	0.436 - 0.454	M2
		500	0.459 - 0.479	3 10	750	0 478 - 0 408	M2
		1000	0.483 - 0.493	5 10	750	0.470-0.490	NI J
		500	0.545 - 0.565	4 or 12	750	0.545 - 0.565	M4
		1000	0.546 - 0.556	10112			
		250	0.620 - 0.670	1	375	0.600 - 0.680	11
		1000	0.662 - 0.672	13 or 14	750	0.662 - 0.682	M5
🗕 14 RSB		1000	0.673 - 0.683				
(0.4-2.3 μm) Dual Gain Bands		1000	0.743 - 0.753	15	750	0.739 - 0.754	M6
		250	0.841 - 0.876	2	375	0.846 - 0.885	12
		1000	0.862 - 0.877	16 or 2			
		250	0.841 - 0.876	10 01 2	750	0.846 - 0.885	M7
		500	SAME	5	750	1.230 - 1.250	M8
		1000	1.360 - 1.390	26	750	1.371 - 1.386	M9
		500	1.628 - 1.652	6	375	1.580 - 1.640	13
M1-M5, M7, M1		500	1.628 - 1.652	6	750	1.580 - 1.640	M10
		500	2.105 - 2.155	7	750	2.225 - 2.275	M11
		1000	3.660 - 3.840	20	375	3.550 - 3.930	14
		1000	SAME	20	750	3.660 - 3.840	M12
		1000	3.929 - 3.989	04 00	750	0.070 4.400	
		1000	3.929 - 3.989	21 or 22	750	3.973 - 4.128	1113
— 7 TEB		1000	SAME	29	750	8.400 - 8.700	M14
		1000	10.780 - 11.280	31	750	10.263 - 11.263	M15
		1000 1000	10.780 - 11.280 11.770 - 12.270	31 or 32	375	10.500 - 12.400	15
		1000	11.770 - 12.270	32	750	11.538 - 12.488	M16
						8	

On-orbit Calibration and Characterization

On-board Calibrators:

- Solar Diffuser (SD)
- Solar Diffuser Stability Monitor (SDSM)
- Blackbody (BB)
- Space View (SV)
- Spectroradiometric Calibration Assembly (SRCA) MODIS only

VIIRS On-orbit Calibration and Characterization

• SD and SDSM Calibration

- SD calibration performed every orbit (no SD door and no scheduling required)
- SDSM operated mostly on a daily basis until May 16, 2014 and then at a reduced frequency (3 times weekly) and short duration

• Lunar Calibration (28)

- Regularly scheduled via S/C roll maneuvers (8-10 times / year)
- Performed at nearly the same phase angles (-51°)

• BB Calibration and Its Warm-up/Cool-down (12)

- Nominally controlled at 292.5 K (no schedule is needed)
- Periodic warm-up and cool-down (scheduled on a quarterly basis)
- Most recent on Dec 12, 2014

Calibration Maneuvers

 Pitch, yaw, and roll maneuvers executed during Intensive Cal/Val (ICV) phase at the mission beginning

MODIS On-orbit Calibration and Characterization

BB WUCD: 270 - 315K; SRCA: 3 modes

On-orbit Performance

- Instrument Operation Environment: stable
- OBC Functions: normal
- BB Calibration: stable with its temperature accurately controlled
- SD Degradation: larger degradation at shorter wavelength
- Radiometric Response:
 - Large changes in VIS and NIR for MODIS
 - Large changes in NIR/SWIR for VIIRS (due to mirror contamination)
 - Very small changes for TEB
- Spectral Responses:
 - Small changes in CW and BW for MODIS (via SRCA)
 - Modulated RSR for VIIRS (via optics degradation modeling)
- Spatial Band-to-Band Registration (BBR): stable

Aqua MODIS BB and VIS/NIR FPA Temperatures

Solar Diffuser (SD) Degradation

Aqua MODIS

S-NPP VIIRS No SD Door

Solar Diffuser (SD) Degradation

SD degradation: strong wavelength dependence

Aqua MODIS Radiometric Responses (VIS/NIR/SWIR)

Large changes in VIS and NIR responses

Wavelength, AOI, and Mirrorside dependence

S-NPP VIIRS Radiometric Responses (VIS/NIR/SWIR)

Status of MODIS and VIIRS L1B Data Products

- Status of MODIS Level 1B Collection 6 (C6)
- Status of VIIRS SDR Code/LUTs
 - IDPS effort (operation)
 - NASA L1B effort (research)

Status of MODIS Level 1B Collection 6 (C6)

- Planned as early as Jan, 2008
 - ✓ Development of improvements to algorithms and LUTs
 - ✓ Extensive interactions with science disciplines
- Proposed changes reviewed and approved by Feb, 2012
 - \checkmark Implantation and data production
- Products (L1B) released to public July, 2012 for Aqua and Nov, 2012 for Terra
- C6 L1B data can be downloaded from: http://ladsweb.nascom.nasa.gov/
- New improvements
 - ✓ Correction for Terra B5 long-term drift
 - ✓ RVS (more bands use earth view trending for RVS characterization)

Status of VIIRS SDR Code/LUTs

• IDPS VIIRS SDR Code/LUTs (radiometric)

- 23 major code versions post launch (current Mx8.5); numerous LUT updates.
- Improved LUT update strategy (on demand -> weekly -> automated).

• Support for NASA SIPS SDR Code/LUTs and data reprocess (C1.0 and C1.1)

- Independent validation and improvements for SDR code/LUTs.
- 23 sets of LUTs for VISNIR/SWIR/DNB delivered to Land SIPS for data reprocess and SDR/EDR assessments.
 - Jan 31, 2013: LUTs from Jan 2012 to Jan 2013 generated using IDPS algorithm Mx6.3 with smoothed functions to remove outliers.
 - Nov 13, 2013: LUTs from Jan 2012 to Oct 2013 generated with calibration improvements based on Mx6.4, including SD/SDSM screen transmission, SD BRDF, RTA mirrors degradation model, modulated RSRs, and smoothed fitting functions.
 - Mar 12, 2014: LUTs from Jan 2012 to Nov 2013 generated with VCST "best" sensor characterization improvements based on Mx7.2 algorithm for Land PEATE reprocess Collection 1.1, including DNB Stray Light Correction algorithm and smoothed fitting functions.
 - Feb 19, 2015 Latest LUTs update V7.2.0.13 for the month of Jan 2015.
 - Ready for Mx8 mission LUTs update and reprocess including solar vector error correction, new SD/SDSM screen transmission and SD BRDF, and modulated RSR.

Challenging Issues and Future Efforts

• MODIS:

- Large changes in VIS/NIR responses: mirror side, wavelength, and AOI dependent => RVS
- On-orbit changes of Terra MODIS VIS/NIR polarization sensitivity
- SD degradation correction for SWIR calibration
- VIIRS:
 - Large changes in NIR/SWIR responses: wavelength and time dependent => modulated RSR(t)
 - Large SD degradation (no SD door) and orrection for SWIR calibration

• Future efforts

- Improve MODIS RSB RVS characterization: using ground targets; exploring new methodologies, removing/reducing impact due to polarization
- Improve SWIR calibration: developing alternative approach for SD degradation correction
- Examine S-NPP VIIRS and Aqua MODIS calibration consistency via different approaches and methodologies

Landsat-8 OLI Calibration Status Update

• Stability

- Only band with significant trend is 443 nm (Coastal Aerosol)
 ~1.0% degradation over 2 yrs
- Other bands stable to within ~0.3% or better
- All calibration techniques (diffusers (2), lamps (3), and lunar) consistent to within 0.3% or better
- Scatter in SWIR lunar data under study

Absolute Calibration

 Reflectance calibration consistent to within 5% with field (vicarious) measurements (better than 3% in most bands)

OLI Radiometric Calibration Stability (1 of 2)

OLI Radiometric Calibration Stability (2 of 2)

OLI Vicarious Calibration Results (Czapla-Myers et al, 2015)

