Report on the CEOS/WGCV-GSICS Microwave Subgroups Joint Meeting

Cheng-Zhi Zou
Meeting Information

- **Meeting Name:** CEOS/WGCV-GSICS Microwave Subgroups Joint Meeting
- **Place:** National Space Science Center, Chinese Academy of Sciences, Beijing, China
- **Time:** July 6-7, 2016
- **Participants:**
 - Cheng-Zhi Zou (Co-Chair) - NOAA
 - Fuzhong Weng - NOAA
 - Xiaolong Dong (Co-Chair) - NSSC (National Space Science Center, CAS)
 - Zhenzhan Wang - NSSC
 - Qifeng Lu - CMA
 - Shengli Wu - CMA
 - Yang Guo - CMA
 - Dawei An - CMA
 - Wenying He - IAP (Institute of Atmospheric Physics, CAS)
 - Yili Zhao - NOTC (National Oceanic Technology Center, SOA)
 - Xiaoqi Huang - NOTC
 - Gang Zheng - SIO (Second Institute of Oceanography, SOA)
 - Chunyue Cheng - BRIMM (Beijing Institute of Radio Metrology and Measurement)
Presentation

- **Overview**
 - Progress in CEOS/WGCV, Xiaulong Dong
 - Overview of intercalibration activities at GSICS Microwave Subgroup, Cheng-Zhi Zou

- **Instrument Performance**
 - Well-calibrated ATMS, Fuzhong Weng
 - FY-3 Evaluation in NWP by CMA, ECMWF, and UKMO, Qifeng Lu

- **Inter-Comparison**
 - Validation of FY-3 MWTS in lower-stratosphere using COSMIC RO data, Wenying He
 - Cross-Calibration of ESA SMOS and NASA Aquarie brightness temperature, Yili Zhao
 - Intercalibration of ATMS and SAPHIR, Isaac Moradi
 - Inter-calibration of Satellite Microwave Radiometer Brightness Temperatures from AMSU-B & SSM/T-2, Nazia Shah
Presentation

- **Pre-launch Calibration**
 - Vacuum test results of FY-3D/MWRI, Shengli Wu
 - Calibration and validation of FY-3 MHTS, Yang Guo
 - Progress of sea surface height calibration of HY2 Radar Altimeter, Xiaoqi Huang
 - New method of radiometric nonlinear calibration for FY-3C Microwave Thermometer, Dawei An
 - Retrieving wet tropospheric path delay base on the HY-2A calibration of microwave radiometer, Gang Zheng

- **Standard development**
 - Microwave remote sensing radiometry at BIRMM, Chunyue Cheng
Challenges:

Change and development of environmental observing satellites

- The number of Earth-observing satellites has vastly increased
- Onboard instruments are more complex and are capable of collecting new types of data in ever-growing volumes.
- The user community has expanded and become more diverse as different data types become available and new applications for Earth observations are developed
- Users have become more organized, forming several international bodies that coordinate and levy Earth observation requirements
Point of Interest– focusing area

- Collaboration between CEOS and GSICS MW subgroups; not to overlap effort

- **CEOS/ WGCV microwave subgroups is focusing on**
 - Guidelines for prelaunch calibration of microwave radiometer
 - Guidelines for scatterometer calibration and data quality control

- **GSICS is focusing on defining reference instrument**
Criteria for reference instrument

- Fuzhong proposed criteria for selecting a reference microwave instrument (see next slide)

- Cheng-Zhi suggested that a reference instrument shall be channel dependent

In CDR application, an instrument that has the longest availability and stability in both its orbits and radiances is often selected as a reference for developing diurnal drift algorithm. But this is channel dependent since, so far, not a single instrument was used as a reference for all channels. Once a channel failed for a reference instrument, another instrument (same type) will often be used as a replacement for the reference.

In this sense, AMSU-A FCDR should be considered as a reference (see Manik’s presentation)

- Tim sent an email providing ideas on choice of references; however, due to incapable of accessing gmail emails in China, these ideas were not discussed at the meeting
Proposed Criteria for a Reference Instrument (F. Weng)

• The observations from the instrument are used in operations and research
 ✓ ATMS data are used in both global and regional NWPs
 ✓ ATMS data are used for hurricane monitoring and other applications (e.g. climate data record)

• The instrument calibration theory should be well established and documented
 ✓ Peer reviewed publications
 ✓ ATBD, OAD and user manual

• The instrument is well calibrated from the prelaunch tests and meets the specifications
 ✓ Radiometric calibration (e.g. non-linearity)
 ✓ Calibration accuracy from thermal vacuum data (TVAC)
 ✓ Traceable methodology for instrument noise
 ✓ Spectrum response function (SRF measurement)
 ✓ Antenna gain (e.g. side-lobe)

• The instrument performance in orbit is well characterized and meets the specifications
 ✓ Stable performance through trending noise
 ✓ TDR to SDR conversion
 ✓ Bias with respect to NWP and other standard (e.g. GPSRO/RAOB simulations, pitch maneuver)
 ✓ Lunar intrusion correction
 ✓ Inter-sensor bias through uses of resampling SDR
 ✓ Geolocation accuracy
 ✓ Error budget (e.g. antenna reflector emission)