

Using the Moon for Cross Comparisons Between Instruments

X. Xiong¹, Z. Wang², A. Angal², and J. Bulter¹ ¹NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA ²MCST/VCST, Greenbelt, MD 20706, USA

GSICS Lunar Calibration Workshop, Xi-An, China, November 13-16, 2017

Introduction

- The need for cross-comparisons between instruments
 - Long-term and consistent data records using observations from multiple earth-observing instruments
- Various approaches
 - SNO, DCC, PICS, RadCaTS, ...
- Using the moon for cross-comparisons between instruments
 - Pros and cons (see Tom Stone's presentations)
- Examples using MODIS and VIIRS (from Xiong et al, SPIE 2017)

Calibration Inter-comparisons Using Lunar Observations

- MODIS and VIIRS Lunar Observations
 - Regularly scheduled at the "same" phase angles for each instrument
 - Support for instrument on-orbit calibration
 - Many applications, including calibration inter-comparison

• Calibration Inter-comparison

- Using integrated lunar irradiance
- Normalizing sensor measured lunar irradiance to model predicated lunar irradiance

Xiong et al, GRSL, 2009 on Terra and Aqua MODIS Xiong et al, SPIE 2014, 2015 on MODIS and VIIRS with PLEIADES (different approaches)

MODIS and VIIRS Lunar Observations (Images)

Aqua MODIS B1 and B2 (1/30, 2/28, 3/30, 11/21, 12/21/2015)

S-NPP VIIRS I1 and I2 (1/30, 3/1, 3/30, 11/22, 12/21/2015)

2015 6 6 SNPP VIIRS I1 Image from March 30, 55 5 5 5 <u>କ କ କ କ କ କ କ କ କ କ</u> କ 1

B1 image from March 30, 2015

Aqua MODIS

-

J.

J

J.

333

MODIS and VIIRS Spectral Bands (VIS/NIR)

VIIRS Band	Spectral Range (um)	Nadir HSR (m)	MODIS Band(s)	Range	HSR
DNB	0.500 - 0.900				
M1	0.402 - 0.422	750	8	0.405 - 0.420	1000
M2	0.436 - 0.454	750	9	0.438 - 0.448	1000
M3	0.478 - 0.498	750	3 10	0.459 - 0.479	500
			5 10	0.483 - 0.493	1000
MA	0.545 - 0.565	750	4 or 12	0.545 - 0.565	500
1714			40112	0.546 - 0.556	1000
11	0.600 - 0.680	375	1	0.620 - 0.670	250
MS	0.662 - 0.682	750	13 or 14	0.662 - 0.672	1000
IVIO	0.002 - 0.002	150	15 01 14	0.673 - 0.683	1000
M6	0.739 - 0.754	750	15	0.743 - 0.753	1000
12	0.846 - 0.885	375	2	0.841 - 0.876	250
			16 or 2	0.862 - 0.877	1000
M7	0.846 - 0.885	750	10 01 2	0.841 - 0.876	250

Integrated Lunar Irradiance (Measured and Normalized)

Lunar Deep Space Calibration

Terra Spacecraft Pitch Maneuvers:

- April 14, 2003
- August 5, 2017

Band	λ (μm)	2003_D	2003_R	Ratio	2017_D	2017_R	Ratio	R/R (%)
1	0.647	1.037	1.027	1.009	1.047	1.046	1.002	1.007
2	0.857	1.077	1.075	1.003	1.079	1.094	0.986	1.017
3	0.466	1.099	1.088	1.010	1.099	1.084	1.014	0.996
4	0.554	1.063	1.054	1.008	1.056	1.050	1.006	1.003
8	0.412	1.107	1.105	1.002	1.116	1.097	1.018	0.984
9	0.442	1.102	1.082	1.019	1.100	1.074	1.024	0.995
10	0.487	1.085	1.087	0.998	1.068	1.075	0.994	1.004
11	0.530	1.063	1.062	1.001	1.033	1.055	0.979	1.022
12	0.547	1.080	1.077	1.002	1.060	1.070	0.991	1.011
17	0.904	1.137	1.139	0.998	1.125	1.140	0.987	1.011
18	0.935	1.177	1.175	1.002	1.160	1.172	0.990	1.012
19	0.936	1.174	1.172	1.002	1.160	1.175	0.988	1.015

Discussion

- Sensor Calibration Traceability and Uncertainty
 - Calibration differences: offsets and variations (systematic and random)
- Calibration Coefficients or LUTs (Versions) and Data Collections
 - Calibration consistency and stability
- Detector IFOV
 - Specified, measured, and changes on-orbit
- Lunar Models
 - Consistent reference
- Impact of Sensor Performance and Characteristics
 - Crosstalk, stray light, polarization
- Others
 - Background subtraction
 - Over-sampling factor if applicable

Summary and Future Work

- Lunar observations can be used effectively to track sensor calibration stability and to examine calibration consistency among sensors
 - Current lunar models (e.g. ROLO, GIRO) can do a fairly good job
 - Lunar models with improved accuracy are needed to move beyond from sensor inter-comparison to sensor inter-calibration
- MODIS and VIIRS lunar observations have been used to support their on-orbit calibration and assess their calibration consistency
 - The differences are generally smaller than their combined calibration uncertainties (not surprised with current design requirements)
 - Question: How to do better? What is good enough?
- A number of factors need to be examined further
 - Improved approach
 - Additional lunar observations

• Joint effort to extend beyond MODIS and VIIRS

- Revisited SeaWiFS results (Eplee)
- Received sample results from OLI (Ong)
- Reviewed Terra pitch lunar calibration results from ASTER

2003 Comparison

SeaWiFS			MODIS					
Band	Wavelength	Measured I	Model I	Band	Wavelength	Measured I	Model I	Ratio
No.	(nm)	µW/m^2/nm	µW/m^2/nm	No.	(nm)	µW/m^2/nm	µW/m^2/nm	
1	412	1.790	1.757	8	412	1.805	1.714	0.97
2	443	2.190	2.130	9	442	2.143	2.026	0.97
				3	466	2.465	2.316	
3	490	2.574	2.437	10	487	2.526	2.319	0.97
4	510	2.589	2.458	11	530	2.617	2.463	0.99
5	555	2.776	2.631	12	547	2.704	2.523	0.98
5	555	2.776	2.631	4	554	2.663	2.539	1.01
				1	647	2.596	2.512	
6	670	2.744	2.556	1	647	2.596	2.512	1.04
7	765	2.480	2.266					
8	865	2.009	1.886	2	857	1.974	1.855	1.00
				17	904	1.912	1.705	
				18	935	1.822	1.574	
				19	936	1.815	1.572	

How about now?