2018 GSICS Data & Research Working Groups Annual Meeting

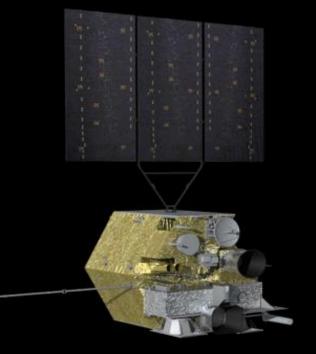
FY-4A satellite commissioning latest outcome

Zhiqing Zhang, Qiang Guo*

guoqiang@cma.gov.cn

National Satellite Meteorological Center, CMA

19 March 2018, Shanghai, China


- 1. Background
- 2. Latest Outcome during Commissioning
- **3. Operational Readiness**
- 4. Conclusion

In 11 December 2016, the 1st satellite of Fengyun-4 series was launched in Xichang successfully. Then, 6 days later (in 17 December 2016), it was positioned in 99.5°E of GEO orbit and renamed FY-4A.

FY-4A: New Era of GEO Satellite

together with GOES-R, MTG, Himawari-8/9.

Spacecraft:

- 1. Launch Weight: approx 5300kg
- 2. Stabilization: Three-axis
- 3. Attitude accuracy: 3"
- 4. Bus: 1553B+Spacewire
- 5. Raw data transmission : X band
- 6. Output power: >= 3200W
- 7. Design life: over 7 years
- GIIRS: Geo. Interferometric Infrared Sounder
- AGRI: Advanced Geosynchronous Radiation Imager
- **LMI:** Lightning Mapping Imager
- **SEP:** Space Environment Package

Characteristics of Payloads (Specification & Main Usage)

Spectral	Spectral	Spatial	Sensitivity	Main	
Coverage	Band (µm)	Resolution (Km)	Sensitivity	Applications	
	0.45~0.49	1	S/N≥90 (ρ=100%)	Aerosol	
	0.55~0.75	0.5~1	S/N≥200 (ρ=100%)	Fog, Clouds	
VIS/NIR	0.75~0.90	1	S/N≥5(ρ=1%)@0.5Km	Vegetation	
	1.36~1.39	2		Cirrus	
	1.58~1.64	2	S/N≥200 (ρ=100%)	Cloud,Snow	
	2.10~2.35	2~4		Cirrus,Aerosol	
	3.50~4.00	2	NEΔT≤0.7K(300K)	Fire	
Middle-	3.50~4.00	AGRI	NE∆T≤0.2K(300K)	Land surface	
wave IR	5.80~6.70	4	NE∆T≤0.3K(260K)	WV	
	6.90~7.30	4	NE∆T≤0.3K(260K)	WV	
	8.00~9.00	4	NEΔT≤0.2K(300K)	WV,Clouds	
Long-wave	10.3~11.3	4	NE∆T≤0.2K(300K)	SST	
Infrared	11.5~12.5	4	NEΔT≤0.2K(300K)	SST	
	13.2~13.8	4	NE∆T≤0.5K(300K)	Clouds,WV	

AGRI's Main Usage:

Acquire multiple band, high temporal resolution, high radiation accuracy images of Earth's surface, atmosphere and cloud

<u>GIIRS's Main Usage:</u>

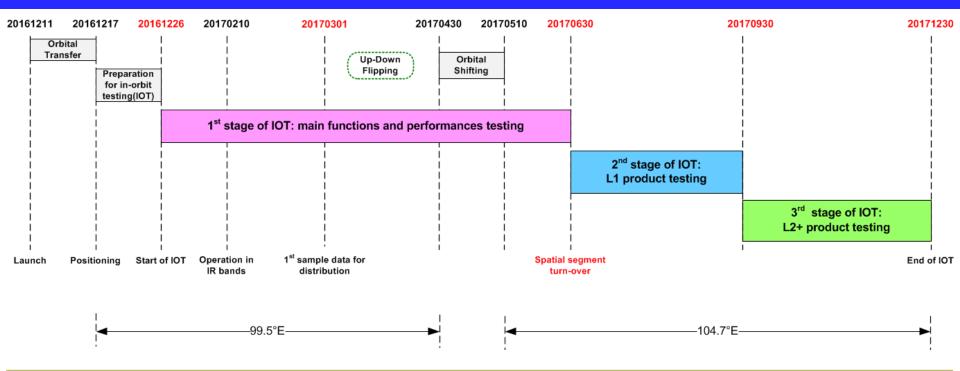
Acquire atmospheric temperature and humidity profile structures under clear condition

LMI's Main Usage:

Acquire lightning distribution maps for a certain coverage

Spatial resolution	about 7.8Km at SSP					
Sensor size	400×300 ×2					
Wave-length at center	777.4nm					
Band-width	1nm±0.1nm					
Detection efficiency	>90%					
False-alarm ratio	<10%					
Dynamic range	>100 LMI					
SNR	>6					
Frequency of frames	2ms					
Quantization	12 bits					
Measurement Error	10%					

	Range Resolution Channels
Spectral Parameters	LWIR: 700-1130 cm ⁻¹ 0.8 538
(Normal mode)	S/MIR:1650-2250 cm ⁻¹ 1.6 375
	VIS: 0.55- 0.75 μm
Spotial Bosolution	LWIR/MWIR : 16 Km SSP
Spatial Resolution	VIS : 2 Km SSP
Operational Mode	China area 5000 × 5000 Km ²
Operational Mode	Mesoscale area 1000 × 1000 Km ²
Towneyel Decolution	China area <1 hr GIIRS
Temporal Resolution	Mesoscale area <1/2 hr
Sensitivity	LWIR: 0.5-1.1 S/MIR: 0.1-0.14
(mW/m ² srcm ²)	VIS: S/N>200(ρ=100%)
Calibration accuracy	1.5 K (3σ) radiation
Calibration accuracy	10 ppm (3σ) spectrum
Quantization Bits	13 bits


1. Background

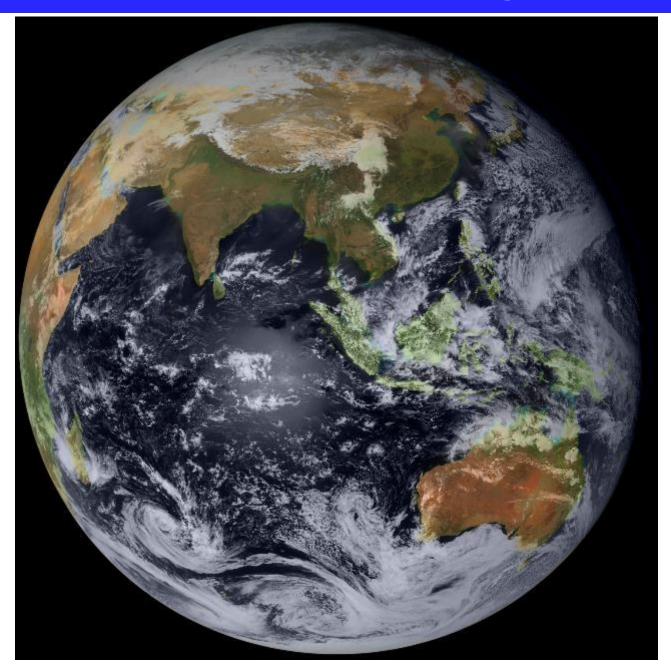
2. Latest Outcome during Commissioning

3. Operational Readiness

4. Conclusion

Schedule of in-orbit testing (IOT) for FY-4A

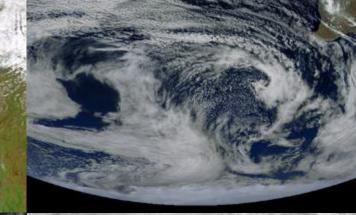
The whole IOT for FY-4A is composed of 3 stages:


1st stage : 20161226-20170630, testing mainly for satellite function and performance, spatial segment of FY-4A is turned over to end users;
2nd stage: 20170630-20170930, testing mainly for L1 products;
3rd stage: 20171001-20171230, testing mainly for L2+ products.

From Jan.1 to Mar.31 2018, a trial run for the whole space- and ground- systems of FY-4A is still undergoing to polish its performance gradually.

Main Results of 1st Stage of FY-4A IOT

Testing Items	Results
1. Platform or Space Segment System	ок
2. Data transmission, Telemetry & Telecontrol, Data Acquisition System	ок
3. Combined Mission Management System Testing between Space and Ground Segments	ОК
4. Ranging & Orbit Determination System	ОК
5. Combined Image Navigation & Registration System Testing between Space and Ground segments	ок
6. Calibration & Validation System Testing	ок
7. Payload: AGRI	ок
8. Payload: GIIRS	ок
9. Payload: LMI	ок
10. Payload: SEP	ок


1st Chromatic Composition Image of AGRI

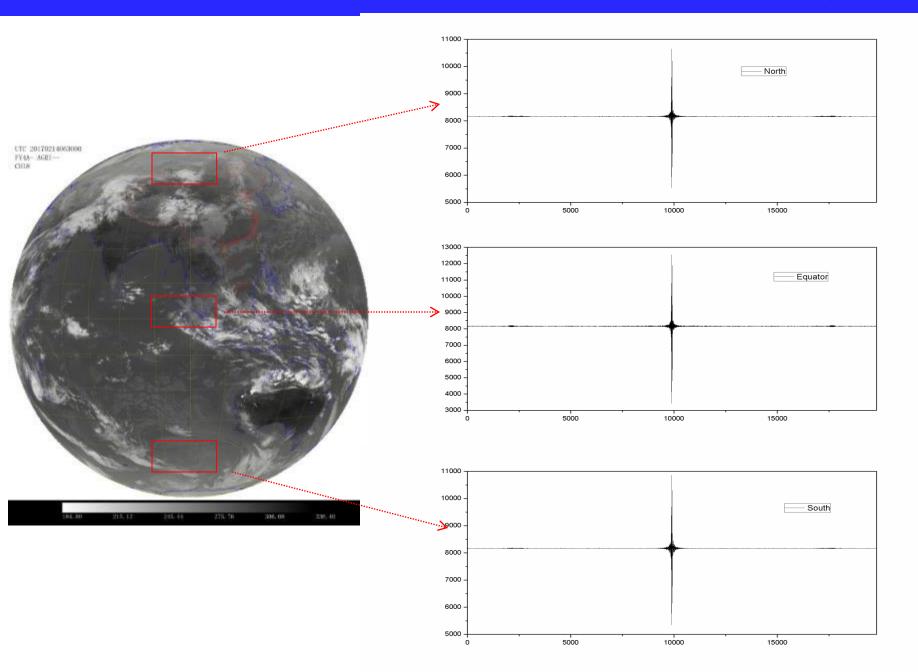
Cyclone in Australia

Haze in the Bay of Bengal

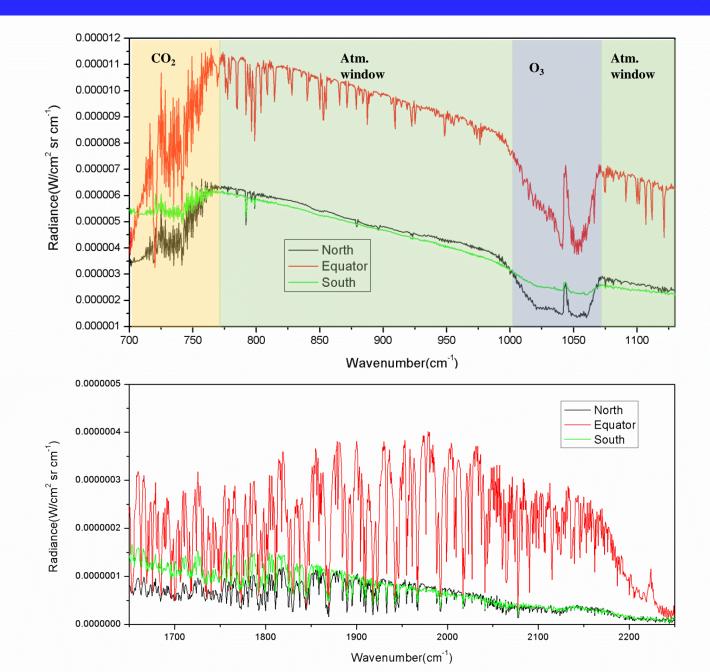
Vortex in the South Pole Area

Cellular Clouds in the South Pole Ar

do top

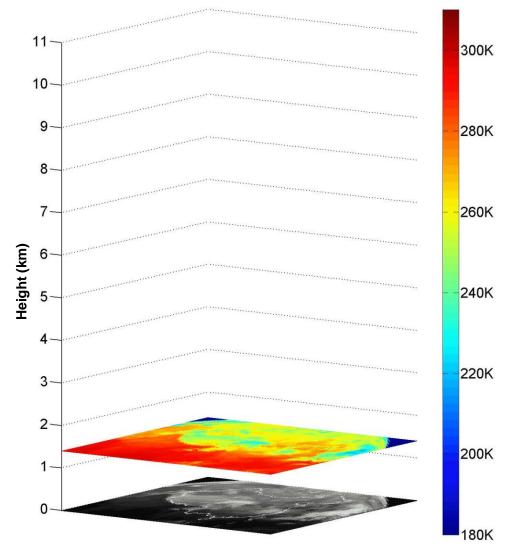

Tropical Cyclone (wide area) **Tropical Cyclone** (local area)

Frontal Cyclone in Japan



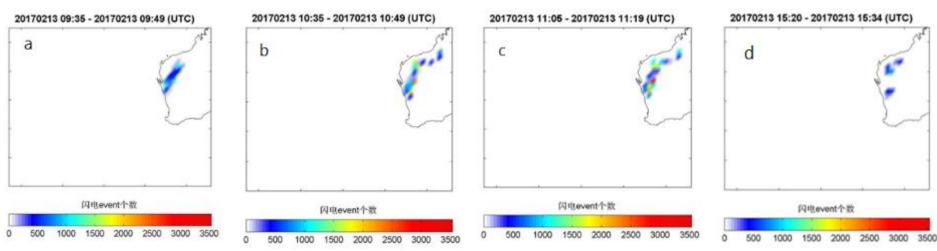
Snow Cover Monitoring n north China

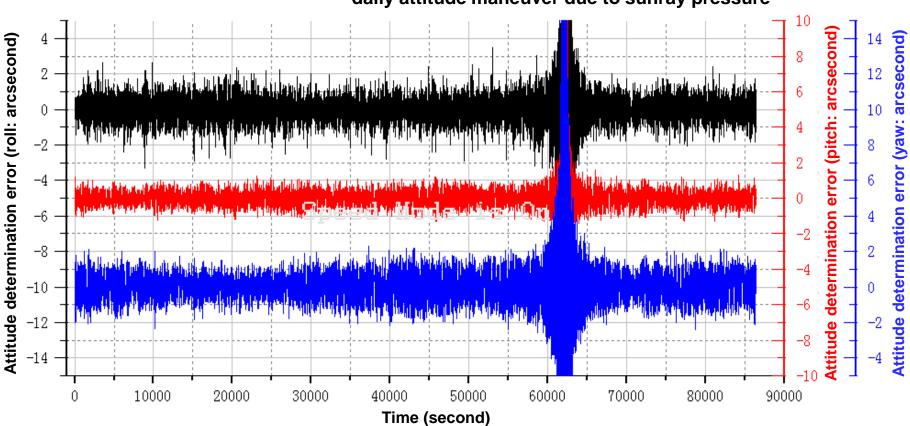
Initial measurements from GIIRS in IR spectrum: Interferogram



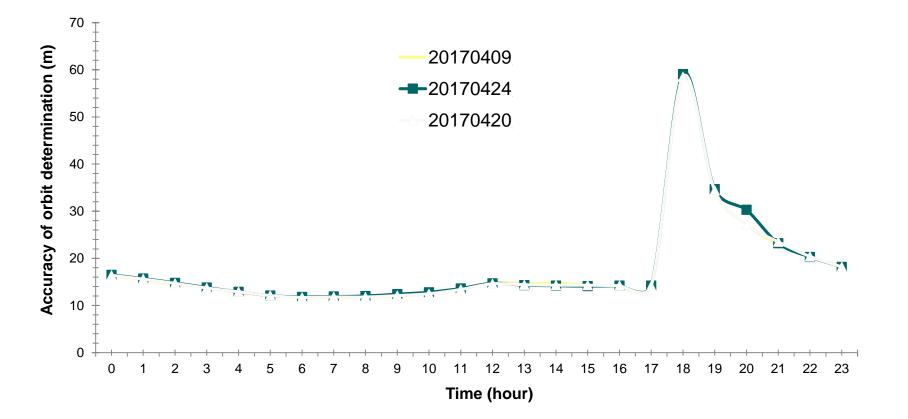
Initial measurements from GIIRS in IR spectrum: Spectrogram

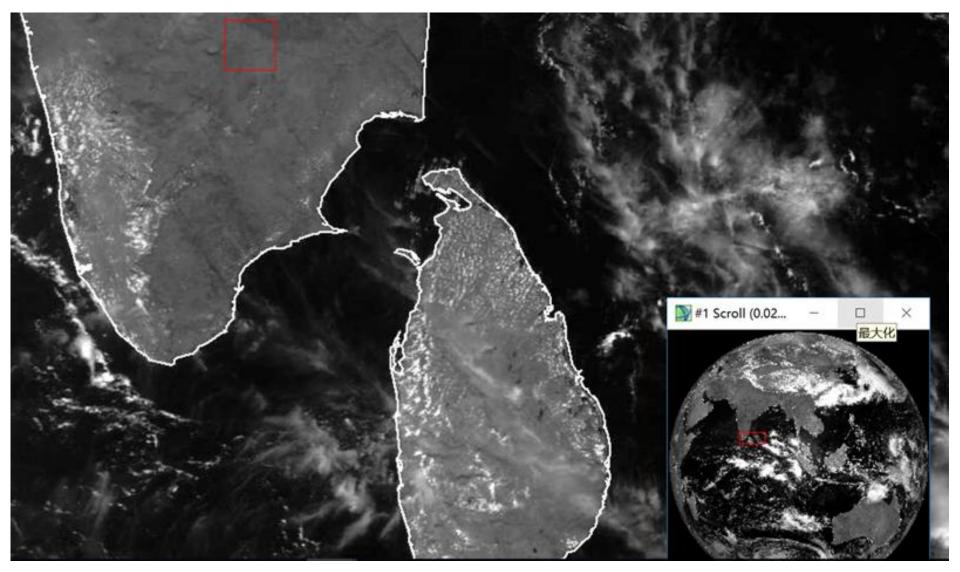
GIRS: BT animation of different layers in troposphere for China area


201702230115


LMI: Dynamic Distribution of Lighting

A typical thunderstorm occurred in West Australia during 13 February, 2017


	Specification	roll	pitch	yaw
Random error (arcsecond, 3σ)	3	2.5	1.0	2.0

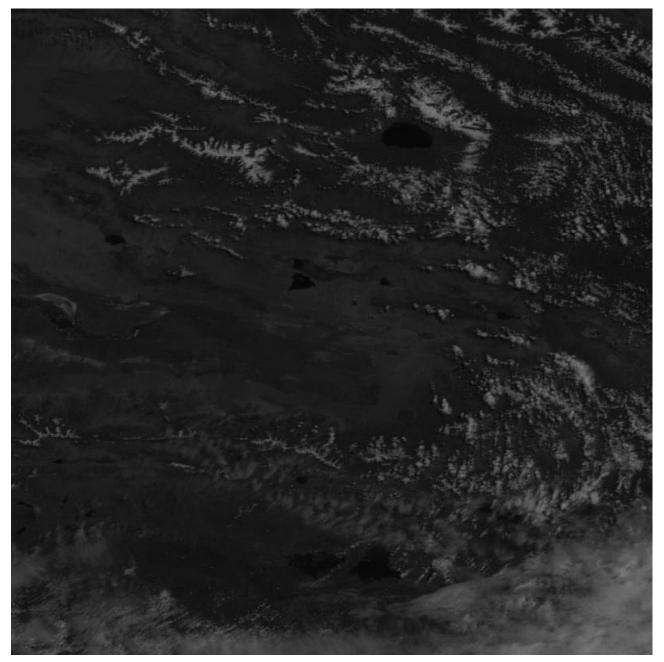

daily attitude maneuver due to sunray pressure

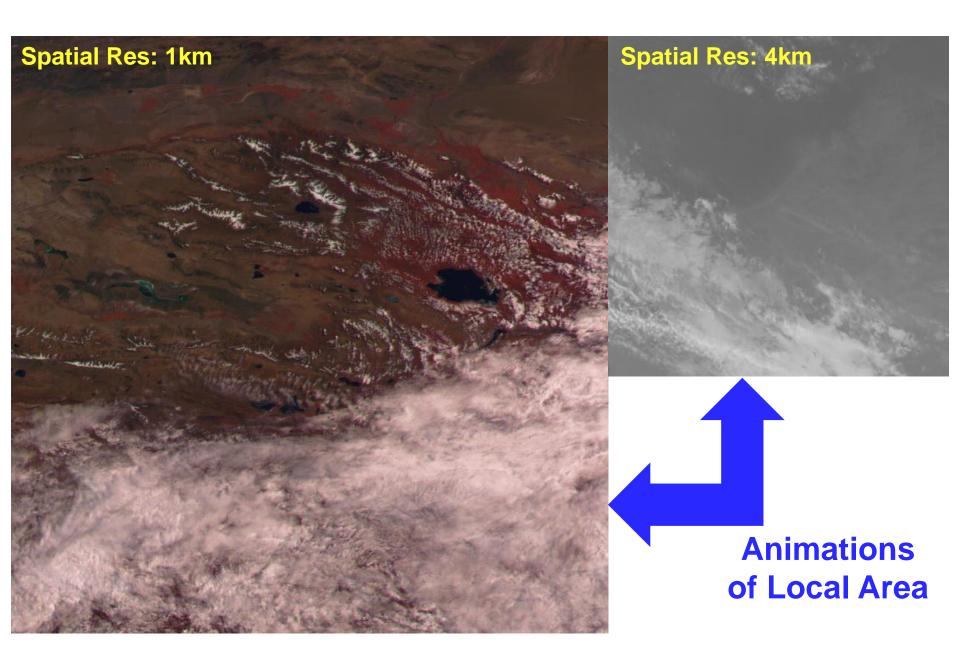
Typical IOT results: accuracy of orbit determination

Accuracy of orbit determination	specification	measurement
Long-segment of curve (6h): meter	20	16
Short-segment of curve (5m): meter	66	60

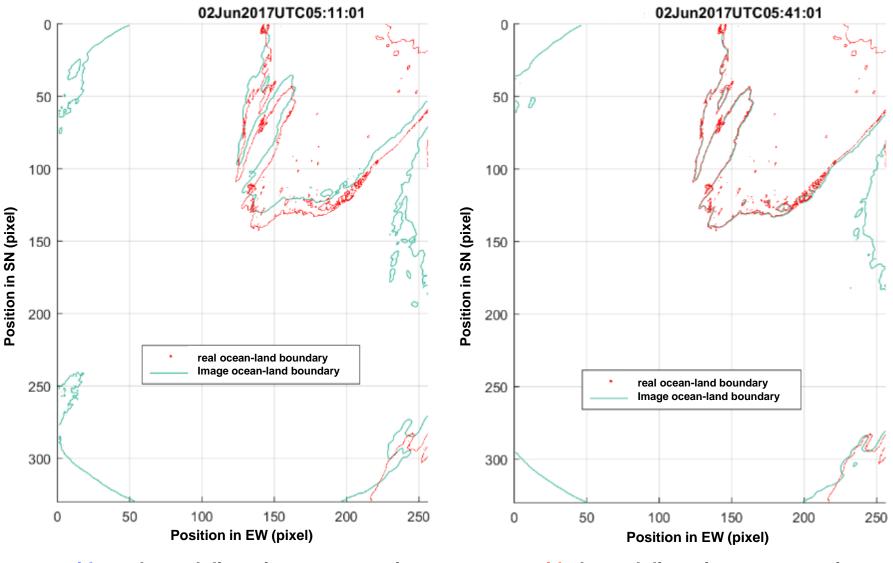


Typical IOT results: accuracy of AGRI INR (<1 IR pixel)

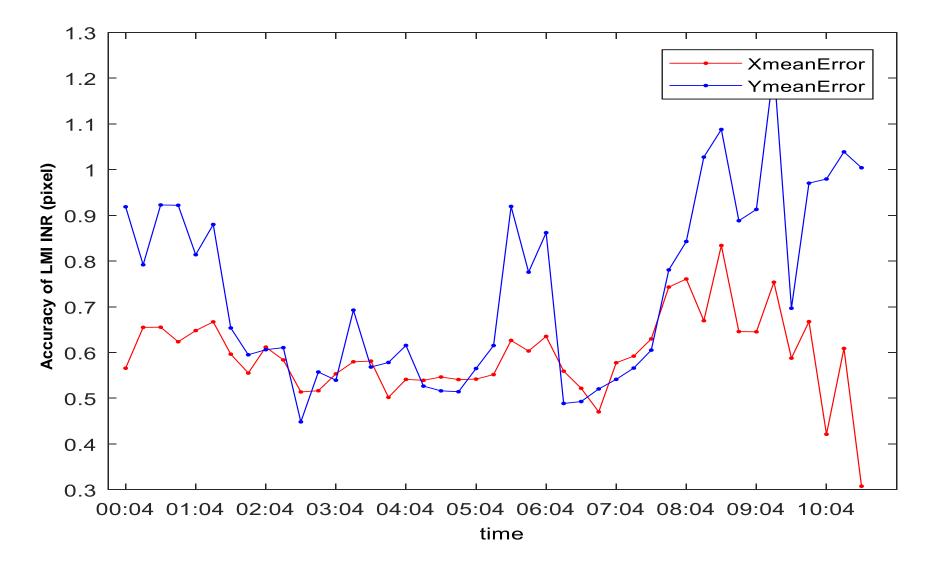



201704110500 UTC 0.75~0.90um 1km

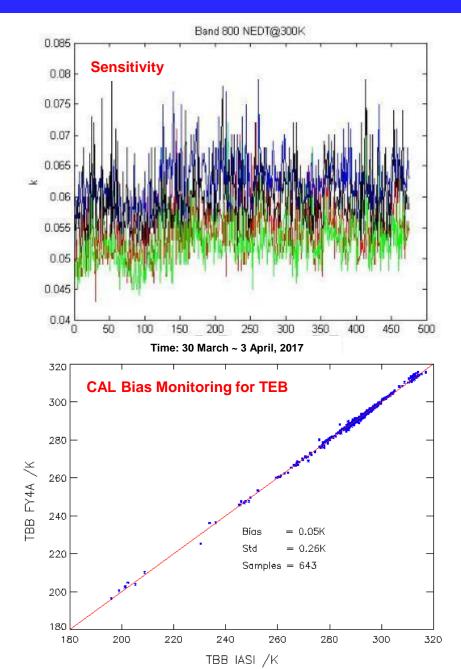
Full Disc Animation (1km)

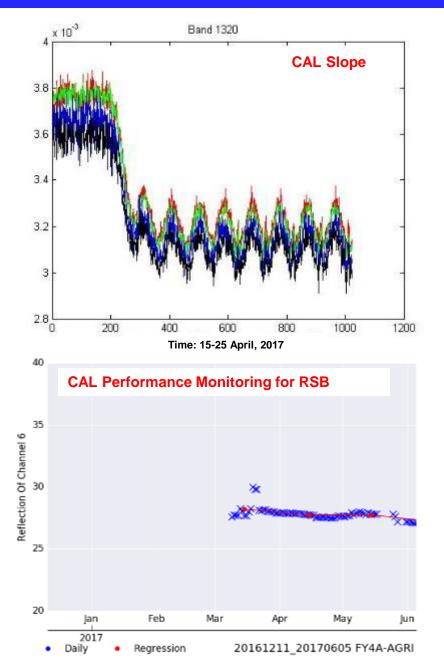


Animation of Local Area (0.5km)

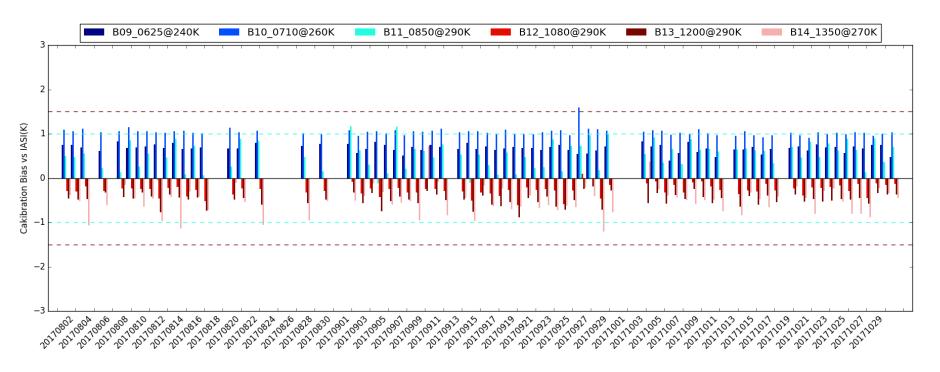


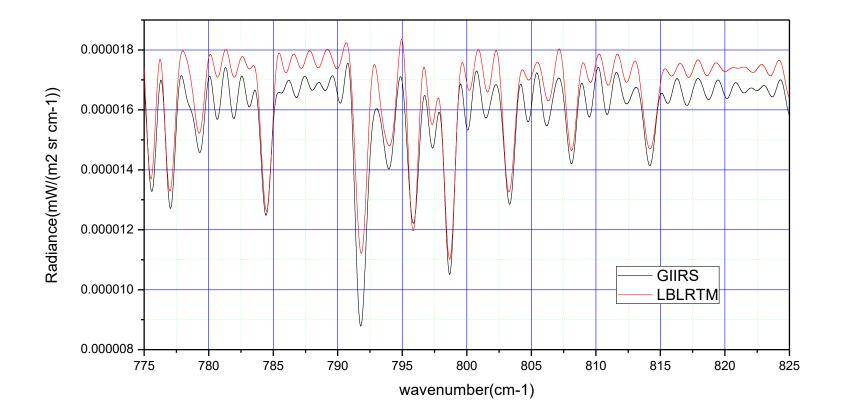
Typical IOT results: accuracy of GIIRS INR (<1 IR pixel)



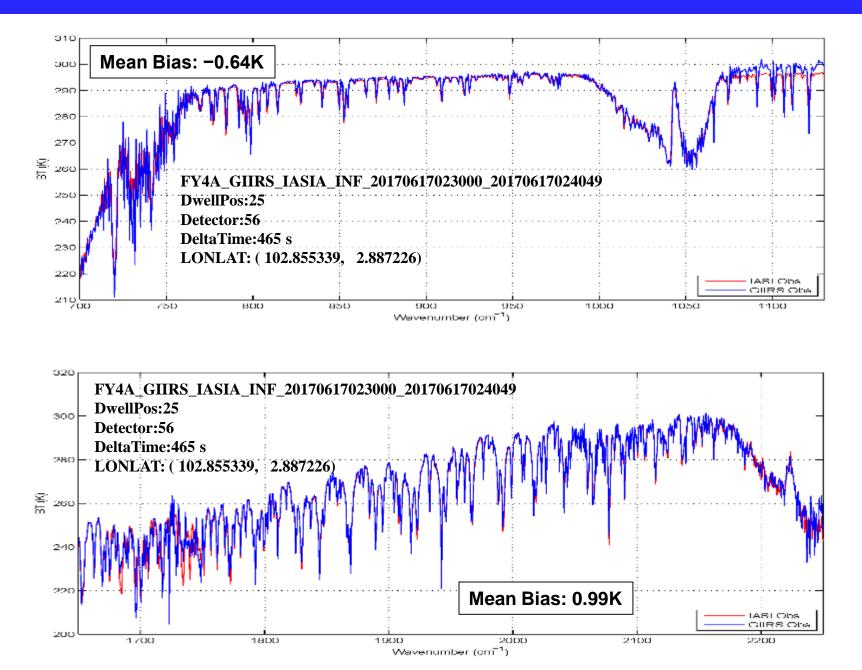

without thermal distortion compensation

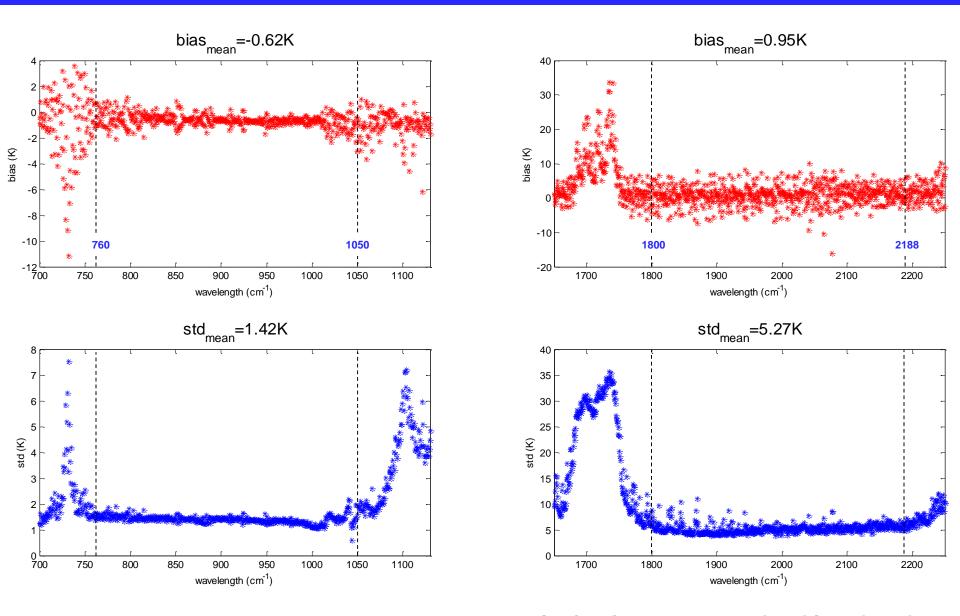
with thermal distortion compensation


Typical IOT results: main performance monitoring for AGRI

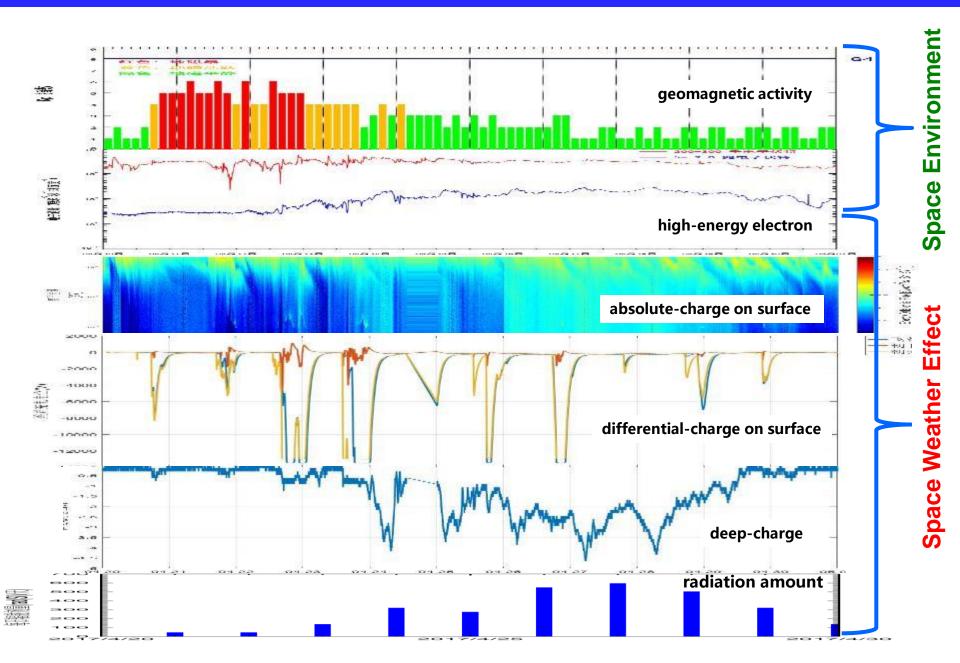


Typical IOT results: CAL bias monitoring for AGRI (IR)

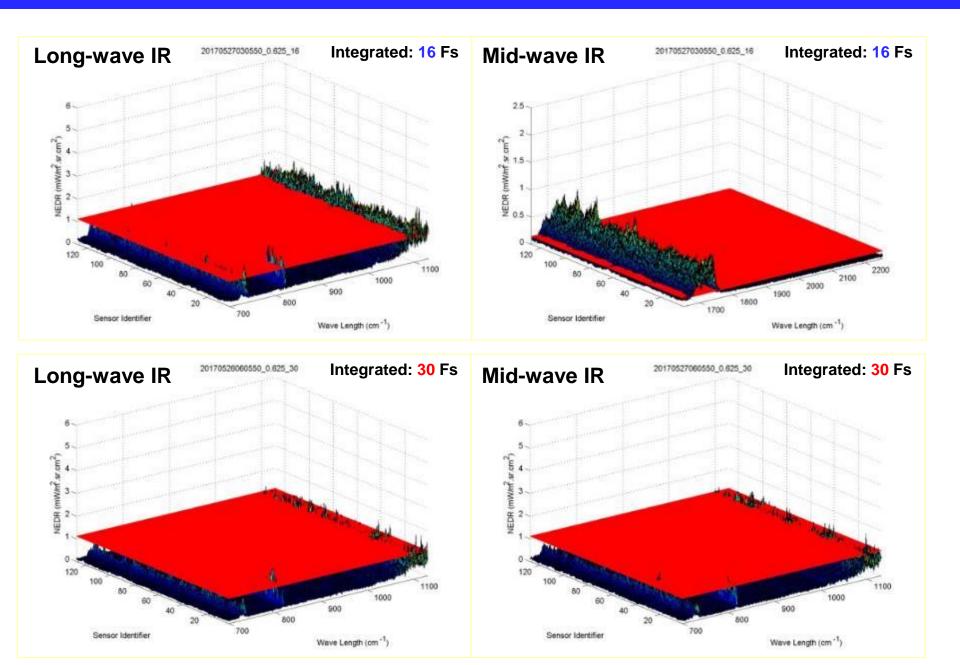

Period: 20170801~20171031; Ref: METOP-A/IASI


- Full optical-path & aperture blackbody with a space-ground combined calibration method is adopted;
- Under the complex thermal environment of GEO orbit, the daily calibration biases for all TEBs are less than 1K;
- ➤ The daily calibration bias of 10.3µm band is perfect (<0.3K).</p>

Typical IOT results (CASE): Radiometric CAL bias monitoring for GIIRS

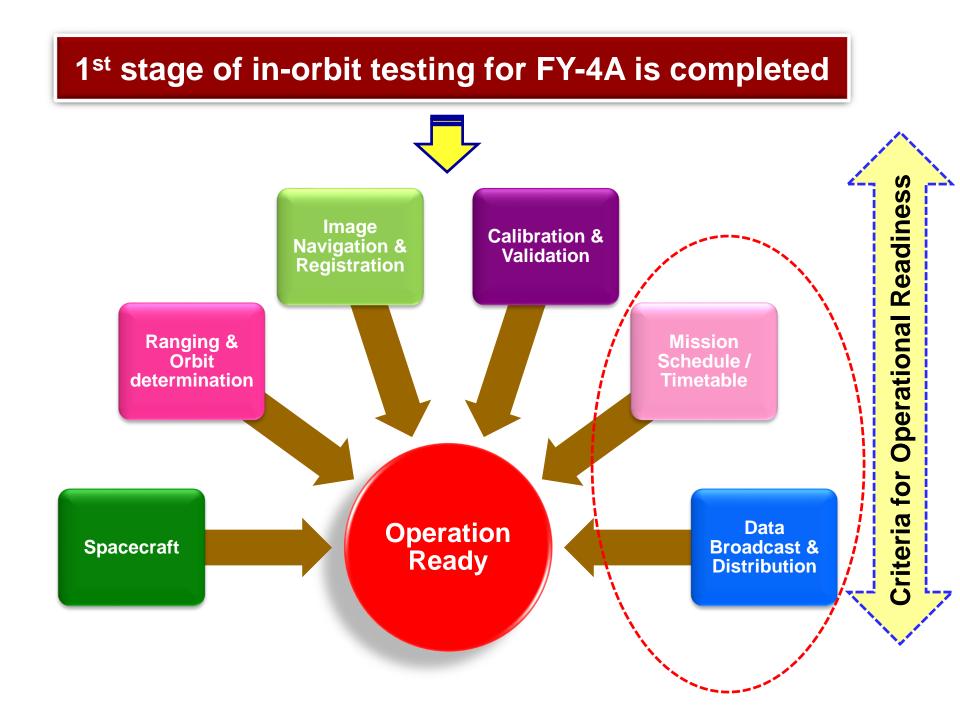


Typical IOT results (STA.): Radiometric CAL bias monitoring for GIRS



Period: 20170801~20171031; Ref: METOP-A/IASI; Samples: 110(LW)/108(MW)

Typical IOT results: In-orbit work performance monitoring for SEP



One big problem: sensitivity of GIIRS is worsen in partial spectrum since 8 March, 2017

- 1. Background
- 2. Latest Outcome during Commissioning
- **3. Operational Readiness**
- 4. Conclusion

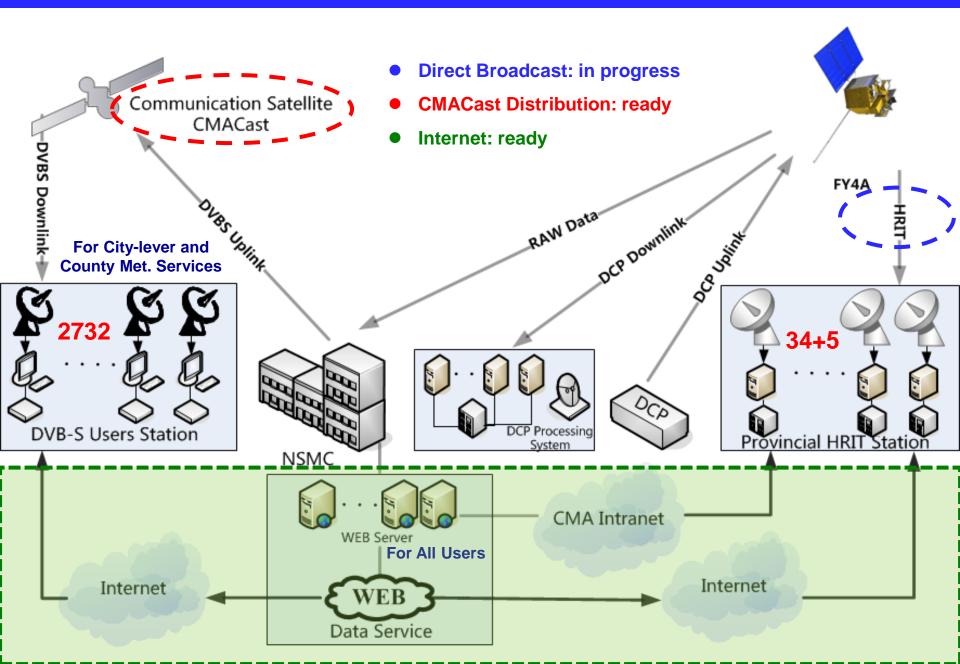
Mission Schedule: AGRI

3	<u> 5 10</u>	15	20 25	. 8	30	35	. 40	'	45	60
00 00	全圆盘常规观测	恒期	全國盘常規观测	恒期	中国区域常期	中国区域常期	中国区域常规	恒期	中国区域常期中国区域常期	恒期
0100	全回盘常规观测	恒期	中国区域常和国区域常和国区域常和	恒期	中国区域常期	中国区域常期	中国区域常知	恒期	中国区域常时中国区域常时	恒期
02 00	全國盘常規观测	恒期	中国区域常中国区域常	恒期	中国区域常期	中国区域常期	中国区域常期	恒期	全國盘常規观测	恒期
03 00	全國盘常規观测	恒調	全國盘常規观测	恒期	中国区域常期	中国区域常期	中国区域常规	恒期	中国区域常建中国区域常建中国区域常建	恒期
04 00	全圆盘常规观测	恒期	中国区域常和国区域常和国区域常和	恒期	中国区域常期	中国区域常期	中国区域常规	恒期	中国区域常期中国区域常期	恒期
05 00	全回盘常规观测	恒期	中国区域常和国区域常和国区域常和	恒期	中国区域常期	中国区域常期	中国区域常知	恒期	全國盘常規观测	恒期
06 00	全國盘常規观测	恒期	全國盘常規观测	恒期	中国区域常期	中国区域常期	中国区域常期	恒期	中国区域常时中国区域常时	恒期
07 00	全國盘常規观测	恒期	中国区域常和国区域常和国区域常和	恒期	中国区域常期	中国区域常期	中国区域常规	恒期	中国区域常和国区域常和国区域常和	恒期
08 00	全國盘常規观测	恒調	中国区域常中国区域常和国区域常和	恒期	中国区域常期	中国区域常期	中国区域常规	恒期	全國盘常規观测	恒期
09 00	全國盘常規观测	恒期	全國盘常規观测	恒期	中国区域常期	中国区域常规	中国区域常规	恒期	中国区域常时中国区域常时	恒期
10 00	全國盘常規观测	恒期	中国区域常中国区域常	恒期	中国区域常期	中国区域常期	中国区域常期	恒期	中国区域常 中国区域常 中国区域常	恒期
1100	全國盘常規观测	恒期	中国区域常计中国区域常计中国区域常计	恒期	中国区域常期	中国区域常期	中国区域常规	恒期	全國盘常規观测	恒期
12 00	全國盘常規观测	恒調	全國盘常規观测	恒期	中国区域常期	中国区域常期	中国区域常规	恒期	中国区域常 中国区域常 中国区域常	恒期
13 00	全國盘常規观测	恒期	中国区域常 中国区域常	恒期	中国区域常期	中国区域常规	中国区域常规	恒期	中国区域常时中国区域常时	恒期
14 00	全國盘常規观测	恒期	中国区域常 中国区域常	恒期	中国区域常期	中国区域常期	中国区域常规	恒期	全國盘常規观测	恒期
15 00	全國盘常規观测	恒調	全國盘常規观测	恒期	中国区域常期	中国区域常期	中国区域常规	恒期	中国区域常时中国区域常时中国区域常时	恒期
1600	全國盘常規观测	恒期	中国区域常和国区域常和国区域常和	恒期	中国区域常期	中国区域常规	中国区域常规	恒期	中国区域常建中国区域常建中国区域常建	恒期
17 00										
18 00										
1900										
20 00	全國盘常規观测	恒期	中国区域常和国区域常和国区域常和	恒期	中国区域常期	中国区域常规	中国区域常规	恒期	全國盘常規观测	恒期
2100	全國盘常規观测	恒期	全國盘常規观测	恒期	中国区域常期	中国区域常期	中国区域常期	恒期	中国区域常中国区域常和国区域常和	恒期
22 00	全國盘常規观测	恒期	中国区域常 中国区域常	恒期	中国区域常期	中国区域常期	中国区域常期	恒期	中国区域常时中国区域常时	101
23 00	全國盘常規观测	恒期	中国区域常时中国区域常时中国区域常时	恒期	中国区域常期	中国区域常期	中国区域常期	恒期	全國盘常規观测	10.8
	全國盘常规观测	居获取			中国区	域常规观测	空病	时间	8	

- Full disc observation can be finished within 15 min at one hour interval;
- Local area (China and its surrounding) observation is restricted within 5 min;
- A complete auxiliary observations (i.e. blackbody, space and star views) is performed every 15 min;
- Every 3 hours, a combination of 3 full-disc images is done to support AMV product generation;
- During 17-19 at local time, AGRI is suspended to ensure its safety.

Mission Schedule: GIIRS

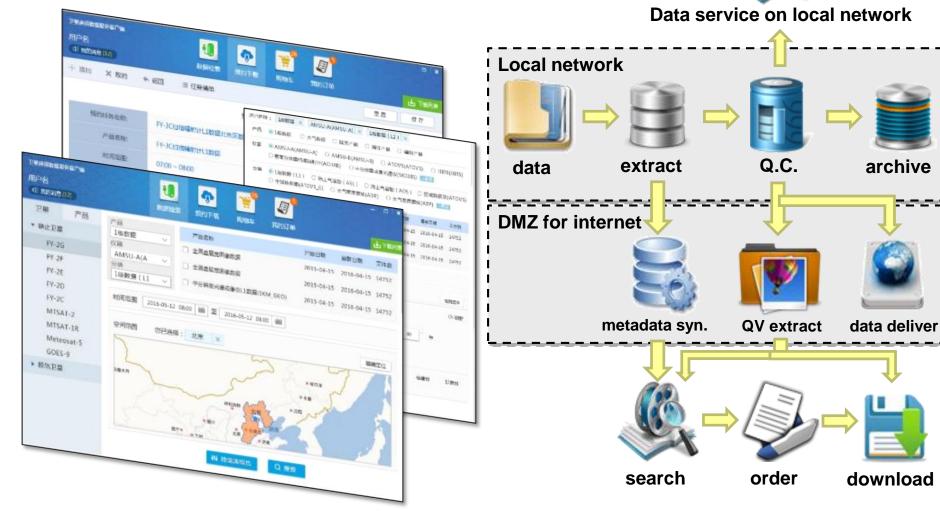
3			15 20	25	80	40		45	5 60
00 00	区域探测	<mark>)</mark> 算 恒星探	区域探测)算 恒星探	区域探测	<mark>)</mark> 🗐	恒星探	区域探测)算 恒星探
0100	区域探测)算 恒星採	区域探测) 📮 恒星採	区域探测	<mark>)</mark> 🗐	恒星採	区域探测)算恒星探
02 00	区域探测),即恒星探	区域探测) 📮 恒星採	区域探测	<mark>)</mark> 🗐	恒星探		1) 📮 恒星探
03 00	区域探测	<mark>)</mark> 算 恒星探	区域探测)算 恒星探	区域探测	<mark>)</mark> 🗐	恒星探	区域探测)算 恒星探
04 00	区域探测	<mark>)</mark> 算 恒星探	区域探测	冫 算 恒星採	区域探测	<mark>)</mark> 🗐	恒星探	区域探测) 异 恒星探
05 00	区域探测	<mark>)</mark> 算 恒星探	区域探测)算恒星探) 具	恒星探		1) 异恒星探
06 00	区域探测	<mark>)</mark> 算 恒星探	区域探测) 📮 恒星探	区域探测	2 🗐	恒星探	区域探测) 📮 恒星探
07 00	区域探测	<mark>)</mark> 算 恒星探	区域探测	> 算 恒星採	区域探测	<mark>)</mark> 🗐	恒星探	区域探测) 异 恒星探
08 00	区域探测	<mark>)</mark> 算 恒星探	区域探测)算 恒星探		<mark>)</mark>	恒星探		1) 异 恒星探
09 00	区域探测	<mark>)</mark> 算 恒星探	区域探测)算 恒星探	区域探测	2 🗐	恒星採	区域探测) 📮 恒星探
10 00	区域探测),即 恒星採	区域探测) 📮 恒星採	区域探测	<mark>)</mark> 🗐	恒星採	区域探测)算 恒星採
1100	区域探测) 算 恒星探	区域探测) 📮 恒星探		<mark>)</mark>	恒星探		1) 🗦 恒星探
12 00	区域探测) 畀 恒星探	区域探测	> 算 恒星採	区域探测	2 🗐	恒星探	区域探测	; 算 恒星探
13 00	区域探测),算 恒星探	区域探测)异 恒星探	区域探测	2 🗐	恒星探	区域探测)异恒星探
14 00	区域探测	<mark>)</mark> 算 恒星探	区域探测)算恒星探	区域探测	2 📮	恒星探		1 2 1
15 00									
1600									
17 00									
18 00									
1900									メ 📮 恒星探
20 00	区域探测) 异 恒星探	区域探测	> 算 恒星探		<mark>)</mark>	恒星探		1) 🗍 恒星探
2100	区域探测) 🗒 恒星探	区域探测	7 💂 恒星探	区域探测) 🗐	恒星探	区域探测	> ♬ 恒星探
22 00	区域探测) 🏛 恒星探	区域探测	2 📮 恒星探	区域探测	2 1	恒星探	区域探测) 📮 恒星採
23 00	区域探测) 🚆 恒星探	区域探测) 💂 恒星探) 🧃	恒星探		1) 🗦 恒星探
		黑体	探测 恒星探测	地标探测	空闲时间段				

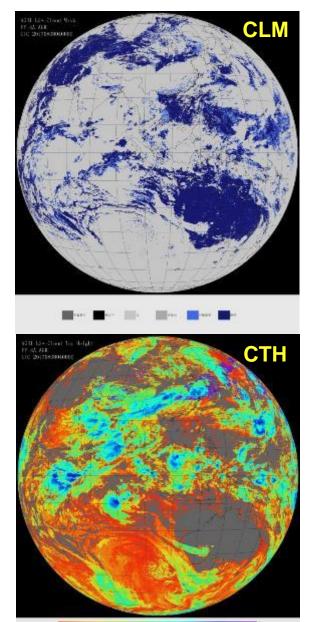

- Local area (China and its surrounding) observation is the main mode of GIIRS, and is divided into several 15-min fragments to fulfill (*Note*: totally about 2.5 hours);
- A complete auxiliary observations (i.e. blackbody, space and star views) is performed every 15 min;
- Every 3 hours, a group of landmark observations is done to support INR of GIIRS;
- During 15-19 at local time, GIIRS is suspended to ensure its safety.

Mission Schedule: LMI

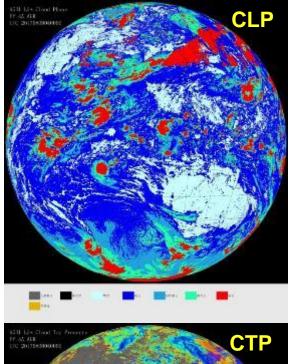
3		5	10	. 1	80	, s	35	<u> </u>	50
00 00	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测
0100	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测
02 00	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测
03 00	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测
04 00	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测
05 00	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测
06 00	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测
07 00	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测
08 00	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测
09 00	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测
10 00	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测
1100	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测
12 00	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测
13 00	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测
14 00	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测
15 00	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测
1600	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测
17 00	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测
18 00	闪电探测	地	闪电探测	虵	闪电探测	地	闪电探测	地	闪电探测
19 00	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测
20 00	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测
2100	闪电探测		闪电探测	地	闪电探测	地	闪电探测	地	闪电探测
22 00	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测
23 00	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测	地	闪电探测
	闪电探测		地标观测 空闲时间段						

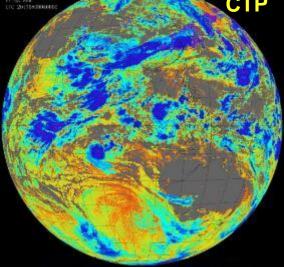
- LMI observation is fixed on the local area (China and its surrounding);
- Every 15 min, a group of landmark observations is done to support INR LMI;
- LMI can continuously operate at all local;
-


Data Broadcasting & Distribution

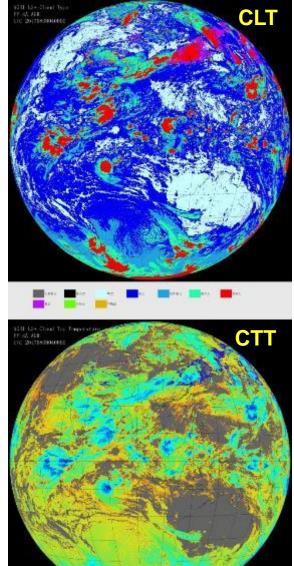

Customized Data Service via Internet

Terminal

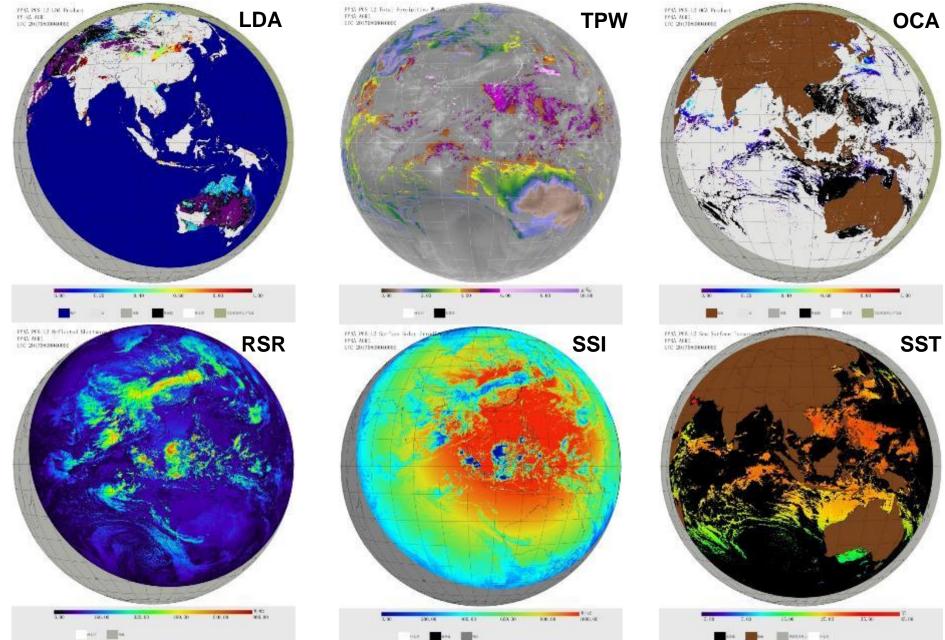

- identify on web, ordered & automatic download
- parallel download, resume from break point mode, P2P acceleration

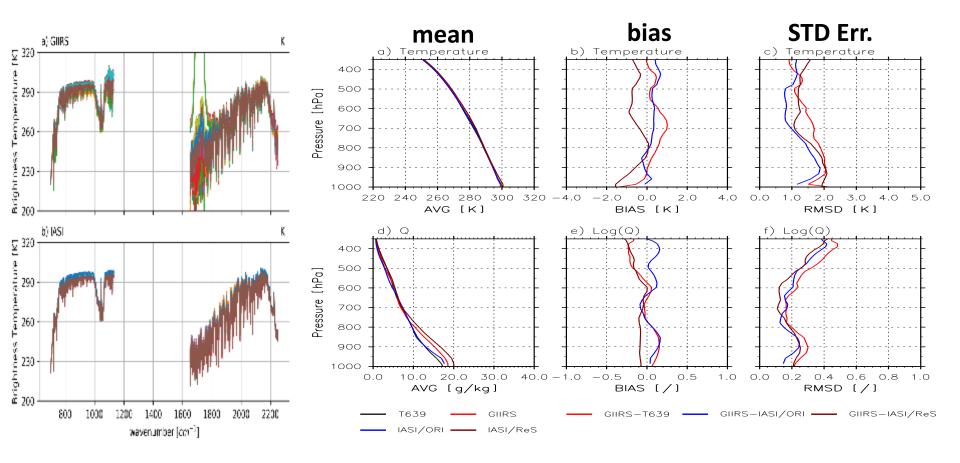


Main L2 Products of AGRI

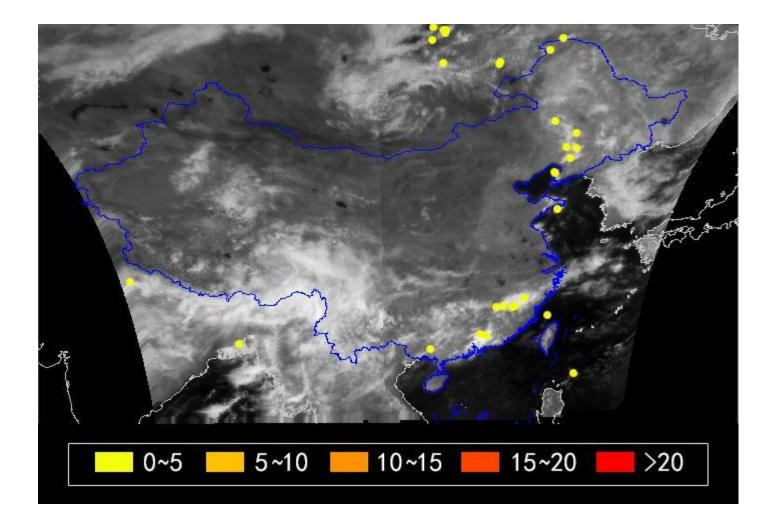


10 100/K 00.000 00 10001 00 1000 00 2000 00 00 0


1.00 220.00 00LO3 000.00 500.20 000.00


C 104.00 140.00 224.00 225.30 238.00 225.00

Main L2 Products of AGRI



Preliminary Temperature and Humidity Profiles from GIIRS

- **Merits:** 1) Observation biases removed;
 - 2) Observation channels optimized;
 - 3) Physical and statistical methods are combined.

Main L2 Products of LMI

Validation for L2 products is undergoing

1. Background

2. Latest Outcome during Commissioning

3. Operational Readiness

4. Conclusion

New generation GEO meteorological satellite (FY-4) is

commissioned and ready for real applications

- High temporal, spatial & radiometric accuracies imager is available;
- High-spectral sounder is firstly onboard in GEO platform;
- Multiple sensors can coordinate with each other stably;
- Scheduled to provide operational service since April, 2018
- Many detailed works need to be done further
 - Hyperspectral soundings utilization in regional NWP model
 - Integrated applications with multiple-sensors in severe weather monitoring as well as short-term climate prediction

Thanks for your attention

