CMA Agency Report 2017

Xiuqing (Scott) Hu

CMA' s GSICS Activities, Action & Achievements Summary

CMA' s support to GDWG Activities

- **CMA'** s support to GRWG Activities
- Summary

CMA's GSICS Activities, Action & Achievements Summary

- FY-3D was successfully launched on November 15, 2017. Refine the Level 1 processing algorithms for FY-3D/MERSI-II, HIRAS and TanSat sensors.
- Post-launch Test for FY-4A, FY-3D and TanSat. Commissioning Test of FY-4A and TanSat was finished. FY-3D early test is ongoing (1f,1h,1k,3i,4g,4j,4l)
- L1 products validation for FY-4A/AGRI,GIIRS, FY-3D/MERSI-II,HIRAS and microwave sensors based on CMA GSICS platform (4m, 7m,9b,9c)
- Initiate the retrospective recalibration for the long term FY satellites data covering FY-1, FY-3, FY-2 serials.
- Second Lunar Calibration workshop was held in Xian (hosted by CMA and local hosted by XIOP). Four month ground-based Lunar observation at Lijiang was conducted again from October to February 2018. Data processing is ongoing.
- Dunhuang Vicarious calibration based on Automatic measurement made good progress and is tested using FY-3C/VIRR. Unmanned aerial vehicles (UAV) for surface reflectance measurement was tested successfully.

Refine the FY-3D/HIRAS SDR algorithm

Improvements:

- 1) **ZPD determination**:
- 2) Phase Alignment of DS, ICT and earth targets;
- 3) No-linear correction;
- 4) Resampling

2

-2

2

Calibration Bias/K

700

800

900

Wavenumber/cm⁻¹

Calibration Bias/K

After No-linear correction, ICT bias is smaller than 0.5K @290K.

03/09/2018

03/15/2018

Latest Instrument status & SDR Processing

DAY 1: data analysis

• 1,Mar

- HIRAS infrared detectors power on
- Telemetry parameters check
- 1st IGM check
- Raw Spectra check
- Calibrated spectra check
- Pre-processing system operation
- 2-3, Mar
 - Interferometer fixed-mirror alignment

• 5, Mar

- ZPD position tuning
- 6, Mar ~ present
 - NEdT evaluation
 - Spectral Calibration comparison with LBL simulation
 - Radiance comparison with NPP/CrIS

02/13/2018

(Courtesy of Chengli Qi et al. , 2018)

03/03/2018

02/25/2018

Preliminary Spectral Calibration Check

HIRAS OBS compared with LBLRTM simulation (LW)

Day1 HIRAS data compared with CrIS

Collocation with CrIS using both overlap orbit

Reference to Likun Wang et al, 2016)

GSICS 2018 Annual Meeting on March 19~23, Shanghai, China

(Courtesy of Chunqiang et al., 2018)

Bias between HIRAS and CrIS

Day 1 data evaluation

Day 1 Global BT

LW 900cm-1

MW 1500cm-1

Data Reception, Raw data combined and Lo data generation, decoding into L1A, SDR Ground processing practice into L1 & OBC dataset.

GSICS 2018 Annual Meeting on M

(Courtesy of Chengli Qi et al. , 2018)

Preliminary evaluation of MERSI-II calibration with VC and MODIS

MERSI-II IR compared with IASI

TanSat & FY-4 Vicarious Calibraiton at Dunhuang

FY-4A AGRI RSB VC results

Bands	1 472nm	2 606nm	3 810nm	4 1370nm	5 1615nm	6 2296nm
k	1.1615	1.1435	1.2002	1	1.1112	0.90593

Spatial Collocation between TanSat and OCO

Key issues:

- **Orbit selection**(Nadir almost overlap
- **Targets Selected** (Using . imager for targets selection)
- **Polarization processing** . based on polarization mirror normalization
 - **Spectral sample** collocation(using RTM and double difference)

Courtesy of Na Xu et al., 2018) GSICS 2018 Annual Meeting on March 19~23, Shanghai, China

Intercomparison between TanSat and OCO

(Courtesy of Na Xu et al. , 2018) SICS 2018 Annual Meeting on March 19~23, Shanghai, China

- IR bands validation of FY-4/AGRI based on GSICS GEO-LEO IR using IASI and CrIS;
- Solar bands validation of FY-4/AGRI based on NPP/VIIRSand Hamawari-8 SNO observation;
- Solar bands validation of FY-4/AGRI using DCC and VC from automatic measurement on Dunhuang site ;
- Validation of Radiometric and spectral calibration of FY-4 GIIRS using IASI and CrIS;
- Validation of spectral calibration of FY-4 GIIRS using LBL simulation in the clear sky sea observation ;
- Inter-comparison between AGRI and GIIRS on the same platform

This Job was carried on for 4 months: May~Sep,

Contributors: Na Xu, Lin Chen, Hanlie Xu, Chunqiang Wu, Chengli Qi, Ling Wang, Tianhang Yang, Fang Zhou

FY-4 AGRI IR bias wrt IASA

IR bands (3.8um not included

- Band 10 has 1.0 K higher than IASI;
- Less than 0.5K at other IR

IR band Bias Monitoring @290K

GSICS 2018 Annual Meeting on March 19~23, Shanghai, China

20170605-20171107 NSMC-GPRC

(Courtesy of Na Xu et al., 2018)

Inter-Calibration System

Solar bands inter-comparison with VIIRS/H-8

Consideration time, geometry, IFOV and spectral matching

FY-4/AGRI via VIIRS

Thanks Doelling's team for providing the SBAF)

(Na Xu et al. , 2017)

Matching between GIIRS and IASI

Time Diff: 20 minutes Center Distance : 4km Zenith angle: <10°, Path Diff <1% Targets homogeneity: AGRI CHN13 5x5 TB std (< 0.05K)

GIIRS validation using IASI

Inter-comparison between AGRI and GIIRS of Association of the same platform

Method:

- Matching pixels: Find the nearest pixel of GIIRS center from AGRI imager
- GIIRS pixel IFOV 16 KM, AGRI pixel IFOV4KM, AGRI 5*5 pixels, Environment area 15*15 pixels;

- GIIRS has higher than AGRI at cooler targets and lower than AGRI at warmer targets
- GIIRS has Bias Detector dependence of each of four column.

(Courtesy of Hanlie Xu, 2018)

Bias Detector dependence

- GIIRS has 32 pixels in each column and bias detector dependencce
 Middle bias and land the second detector of each as here.
- Middle bias smaller, Larger bias in the end detector of each column

(Courtesy of Hanlie Xu, 2018)

 33
 65
 97

 34
 67
 98

 35
 68
 100

2 3 4

29 30 31

Preliminary conclusion of FY-4A L1 Validation

AGRI IR bands:

- Biases of most IR bands are smaller 1 k and keep stable for long term.
- Biases of Middle IR bands (B7 and B8) are larger and need further validation
- AGRI Solar bands : B3 and B5 has high accuracy within 5%, other bands exist higher at low signal, and Lower @ high signal than VIIRS, B6 (2.3um) has a large lower.
- □ AGRI degradation monitoring: B1 (0.46um) has obvious degradation trend ,B2 and B3 are very stable, SWIR bands need further monitoring.

GIIRS Validation:

- Good consistence between GIIRS and IASI/CrIS (<1K) at most of spectral bands, But has a large bias in the smaller wavenumber in longwave and middle bands.
- GIIRS has large bias in the cooler targets which small 200K
- Finding the Bias Detector dependence using inter-comparison between AGRI and GIIRS on the FY-4 same platform.

CMA Initiate the retrospective calibration for long term FY historical satellites data

- (1) National Major Project application (MOST 2018)
- (2) FY-3 FCDR and EDR begin to be established
- (3) FY-2 Fundamental CDR established
- (4) Other projects.....

Gain jump on FY-3A MERSI SW bands

Band 7: 18 times

Normalized Calibration Slope FY-3A~3C VIRR Recalibration

- VIRR flown on FY₃ satellite series are 1. calibrated used a consistent approach.
- Comparison between the solar reflectance 2. data from VIRR onboard different FY3 satellites before and after performing consistent calibration is presented.

FY-3A/VIRR

2012

Time FY-3B/VIRR 2013

2014

201

2018

2018

1.6

0.9 2009

1.6

Q

Band Annual Drift %

2.708

1.733 0.851 7.186 6.155

4,716

2010

2011

Tibet Glaciers TOA BRDF

Model selection

Simulation and Observed

• Snow surface model has smaller bias than Ross-Li model with MODIS observation

• snow surface has smaller than 5% (~90% samples), but Ross-Li is near 10%

(Courtesy of Ling Wang et al. , 2018)

nnual Meeting on March 19~23, Shanghai, China

✓ Nadir looking

✓ Off-Nadir looking

(Courtesy of Ling Wang et al. , 2018)

nnual Meeting on March 19~23, Shanghai, China

GSICS/IVOS

ScottHu Log out

Lunar Calibration Workshop nd

November 13-16, 2017 Xi'an, China

Ground-based Lunar Data processing and comparison with models

Q

CMA Lunar observation activities

- CMA is leading an important activity in collaboration with other institutes from the Chinese Academy of Science on the development of new instruments and dedicated ground-based lunar measurement campaigns.
- The objectives are to develop new lunar calibration models both in irradiance and in radiance with a significantly reduced level of uncertainties and to achieve traceability to SI standards. Several campaigns took place in 2015, in 2016 and more recently in 2017-2018.
- The current outcome of those campaigns were presented together with the foreseen future activities. New measurement campaigns are planned, with greater capabilities (automated acquisitions, broader spectral coverage and long time series for instance).
- Measurements from space are also part of CMA's future developments.

Use of FY-3C/GNOS Data for Assessing Sounders

Global Distribution of O^(Obs)-**B**^(GNOS) (Channels 5-8)

ATMS global bias is quite uniform and small, less than 0.5K

ATMS Mean Bias and Standard Deviation

While brightness temperatures at Suomi ATMS 22 channels are simulated, the results for those channels affecting by water vapor and surface emission are less reliable since RO profiles are less accurate. If we trust GPSRO as an absolute standard, the TDR bias Must be zero or slightly negative.

Data Group: CMA GPRC Website Update

Reviewed by GDWG Chair during 2017 annual meeting
 Fix error links, new webpage online http://gsics.nsmc.org.cn
 CMA GRWG: Content provider
 CMA GDWG: Website construction and operater
 Integrated into NSMC Web Portal, Servers operated by NSMC IT Dep.

New Contents on CMA GPRC WebsiteInstrument Status

Instrument Performance Monitoring

FY-3 Instrument Performance	Home / FY Calibration & Validation / Instrument Performance Monitoring	Satellite Status	Home / FY Calibration & Validation / Satellite Status				
FY3B Instrument Performance	Instrument Performance Monitoring	FY Operational Satellite Status	FY Operational Satellite Status				
MERSI	Brameter Bart Date (UTC)	FY LEO Satellite Status					
 VIRR MWHS 	BB_Temp V PRTI V 20171009	FY GEO Satellite Status	Type Sa	atellite	Status		
• IRAS		Legend	LEO F	Y-3C	Operational with degraded performance		
∘ TOU	Updated (UTC): 2017-10-10 17:05		F	Y-3B	Operational		
∘ SIM	EV9C VIBB OBC - BB Temp PBT1	Color Meaning GREEN Operational or capable of operations	GEO F	Y-2G	Operational		
FY3C Instrument Performance	Updated at Tue Oct 10 08:19:14 2017 UTC		F	Y-2F	Operational		
	280.0 Latest 2 days		F	Y-2E	Standby		
• MWHS		standby				-	
• MWRI	276.2	ORANGE Operational with degraded					
MWTS IBAS		performance					
• TOU	272.5	RED Not operational	FY-3C Status				
• SBUS		BLUE Functional, turned off	Desription				
• ERM	268.8	BLANK No Status Reported	Acronym F	Y-3C			
 GNOS 			Full Name Fe	ena-Yun-3C			
• SEM	265.0 : : : : : : : : : : : : : : : : : : :		Altitude 83	36 km			
FY-3D Instrument Performance	10/08/2017 10/08/2017 10/08/2017 10/08/2017		ECT 02	2:00 desc (UTC)			
• MWTS II	280.0 30 days:		Launch Date 20	013-09-23			
◦ MWHS II							
MERSI II MWRI	276.2		Payload Status				
• SEM			Acronym Fi	ull Name	Status	IPM	
• GAS	g 272.5		MERSI-1 M	ledium Resolution Spectral Imager - 1	Functional, turned off	OBC	
o IPM	1 And a second and a		VIRR VI	isible and Infra-Red Radiometer	Operational	OBC	
• GNOS	268.8		MWHS-2 M	licro-Wave Humidity Sounder - 2	Operational	OBC	
			MWRI M	licro-Wave Radiation Imager	Operational	OBC	
	265.0 <u>: : : : : : : : : : : : : : : : : : :</u>		MWTS-2 M	licro-Wave Temperature Sounder - 2	Not operational	OBC	
		-					

Look! CMA GSICS team!

Only one sentence: 2017 and 2018 are very busy for us! Thank everyone' s contribution to CMA GSICS

Thanks!

Email: huxq@cma.gov.cn Tel: 68407463 Cell phone: 17710267179 National Satellite Meteorological Center, CMA