GSICS UV Subgroup Report

Rose Munro, Larry Flynn
Selected GRWG-UV Subgroup Baseline Projects

Reference Solar Spectrum

Aim: to evaluate the available reference solar spectra and make a recommendation for a reference solar spectrum for community use. Lead – Larry Flynn (NOAA)

White Paper on Ground-based Characterisation of UV/Vis/NIR/SWIR spectrometers

Aim: to prepare a white paper documenting best-practise for the on-ground calibration of UV/Vis/NIR/SWIR spectrometers based on in-orbit experience from relevant missions. Lead – Rosemary Munro (EUMETSAT) (transferred from R. Lang)

Match-ups and Target Sites

Aim: to produce over-pass comparisons of UV sensors for specific target sites in use by the community. As a first step summaries of methods and results for target sites currently in use will be collected. Lead – TBC.

Cross-calibration below 300nm

Aim: To devise new methods for comparison of wavelength pairs for different viewing geometries taking into account contribution function equivalence to allow radiometric performance comparisons for ozone profile wavelengths from 240 – 200 nm. Lead Larry Flynn (NOAA).
Reference Solar Spectrum – Status

Compare solar measurements from BUV (Backscatter Ultraviolet) instruments.

Goals

Agreement at 1% on solar spectra relative to bandpass-convolved high resolution spectra as a transfer after identifying wavelength shifts and accounting for solar activity. Long-term solar spectra drift and instrument degradation can also be analysed.

Collaborative work has started well with participation growing to include more instruments and solar modellers.

See talks in UV Subgroup session at this meeting:

- 6c - FY-3/TOU inter-calibration with GOME-2 and OMPS for solar diffuser correction (H. Wang, NSSC/CAS)
- 6f - Comparison among Reference Solar Spectra using TROPOMI Solar Measurements (M. Kang, Ewha Women's University)
- 6g - NOAA Update on Three GSICS UV Projects: Solar, Reflectivity and Residuals (L. Flynn, NOAA)

Larry Flynn (Project Lead) will focus on a model to explain the OMPS Nadir Profiler solar measurements and provide an initial comparison to a synthetic spectrum – these will both be used to support inter-comparisons with other solar measurements.
White Paper on Ground-based Characterisation

White Paper still in drafting stage – contributions and/or offers to author sub-sections welcome!

Proposed table of contents

- Accuracy, sensitivity and repeatability
 I. Sources / commissioning
 II. Thermal and pressure environment / stability and characterization

- Instrument components
 I. Detector level
 a) Noise
 b) PRNU/PPG
 c) SMEAR
 d) Etaloning
 II. Stray-light
 III. Grating and alignment (ISRF)
 a) Spectral assignment
 b) Spectral stability
 IV. Pointing and Spatial stability (ISRF/PSF)
 a) Spatial and spectral aliasing
 b) Radiometric and spectral scene in-homogeneity errors.
 c) Detector co-registration (overlap)
 V. Polarisation sensitivity
 VI. Radiometric response
 a) Sources
 b) Geometry
 VII. Diffuser characterisation
 VIII. Degradation and contamination
 IX.?
Match-ups and Target Sites

Produce over-pass comparisons of UV/Vis sensors for specific target sites in use by the community.

Goals

- Agreement at 1% on cloud free scene reflectance for 340 nm. Desert, Equatorial Pacific, Polar Ice.
- Agreement at 1% on aerosol index – wavelength dependence of reflectance.
- Long-term stability of 0.5% in reflectance channels

Work being carried out by L. Flynn and colleagues, NOAA, ...

- Focussing on comparisons of Effective Reflectivity and Aerosol Indices in an Equatorial Pacific box as a region for generation of soft calibration adjustments.
- Using minimum land reflectivities and comparisons to other products to check these adjustments especially for sun glint contaminated FOVs.
- Reprocessing all of the OMPS Nadir Mapper Version 8 Total Column Ozone products for the first five years and will use the Pacific region to check the stability of the products.

- See talk:

 6g - NOAA Update on Three GSICS UV Projects: Solar, Reflectivity and Residuals (L. Flynn, NOAA)
Cross-Calibration below 300nm

Methods

Double Difference using Climatology:

Perform comparisons (statistical trade off in quantity of matchups vs. quality):

Forward model and measurements:

Ongoing Activities

• Comparisons of Initial Measurement Residuals for Ozone Profile Channels
• This method will be used to generate soft calibration adjustments to remove measurement bias between the NOAA-19 SBUV/2 and S-NPP OMPS NP.
• The first five years of OMPS NP measurements will be reprocessed and compare the two records.

• See talk:

 6g - NOAA Update on Three GSICS UV Projects: Solar, Reflectivity and Residuals (L. Flynn, NOAA)
Cross-Calibration below 300nm

Methods

Double Difference using Climatology:

Perform comparisons (statistical trade off in quantity of matchups vs. quality):

Forward model and measurements:

Ongoing Activities

- Comparisons of Initial Measurement Residuals for Ozone Profile Channels
- This method will be used to generate soft calibration adjustments to remove measurement bias between the NOAA-19 SBUV/2 and S-NPP OMPS NP.
- The first five years of OMPS NP measurements will be reprocessed and compare the two records.

- See talk:

 6g - NOAA Update on Three GSICS UV Projects: Solar, Reflectivity and Residuals (L. Flynn, NOAA)
Other talks in the UV Sub-group Session

- See talks:
 - 6a – The technology of a new generation of Ultraviolet Hyperspectral sensors for detecting global ozone profiles (G. Lin, CIOFMP/CAS)
 - 6b – The successor of the Total Ozone Unit (TOU) (Y. Wang NSSC/CAS)
 - 6d – In-orbit calibration for FY-3C/TOU (W. Wang CMA)
 - 6e – Report on the NOAA-20 OMPS (L. Flynn NOAA)
Thank you for your Attention

Questions?