

GSICS IR Web Meeting for Hyperspectral Sounder Inter-comparison

FY-4A/GIIRS Performance and Intercomparison Results

Qiang Guo*, Boyang Chen, Wen Rui, Weiwei Xu, Xin Wang, Zhiqing Zhang and Caiying Wei

guoqiang@cma.gov.cn

August 22, 2019


Outline

- 1. Background
- 2. L1 data (V2) of GIIRS and related assessments
- 3. GEO-LEO/Sounder intercomparison (GIIRS vs. IASI)
- 4. Follow-up improvements
- 5. Summary

Main Specifications of GIIRS

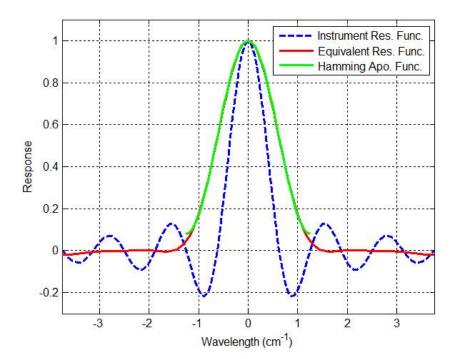
	Range	Resolution	Channels
Spectral Parameters	LWIR: 700-1130 cm ⁻¹	0.625 -1	689
(Normal mode)	MWIR:1650-2250 cm ⁻¹	0.625 -1	961
	VIS: 0.55- 0.75 μm		
Cratic Decelution	LWIR/MWIR : 16 K	m @ nadir	
Spatial Resolution	VIS : 2 Kr	n @ nadir	
Operational Made	China area 5000	× 5000 Km²	
Operational Mode	Mesoscale area 1000		
Temporal Pacalution	China area <1 h	r	
Temporal Resolution	Mesoscale area < ¹ / ₂		
Sensitivity	LWIR: 0.5-1.1 MW	IR: 0.1-0.14	
(mW/m ² .sr.cm ²)	VIS: S/N>200(ρ=10	0%)	
Radiometric Accuracy	1.5 K		
Spectral Accuracy	10 ppm		
Quantization Bits	13 bits		

Operational Application in GRAPES since Dec 25,2018

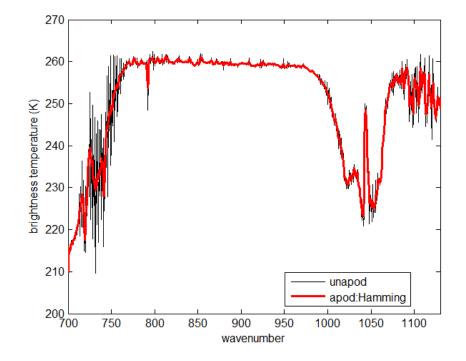
Announcement on Level-1 data update of Geostationary Interferometric Infrared Sounder onboard Fengyun-4A satellite

Source: Author: Issued Date:13 August 2019

To increase the observation quality of the Geostationary Interferometric Infrared Sounder (GIIRS) onboard Fengyun-4A (FY-4A) satellite, the related calibration algorithms of the Level-1 (L1) data of FY-4A/GIIRS have been updated completely. The new version L1 data (V2) is scheduled to be broadcast since 12:00 August 13, 2019 (BJT), where the main improvements include:


- 1. The improved spectral and radiometric calibration algorithms are utilized;
- 2. The apodisation processing upon GIIRS L1 data with Hamming function is adopted;
- 3. The version name of the L1 data file is changed from V1 to V2.

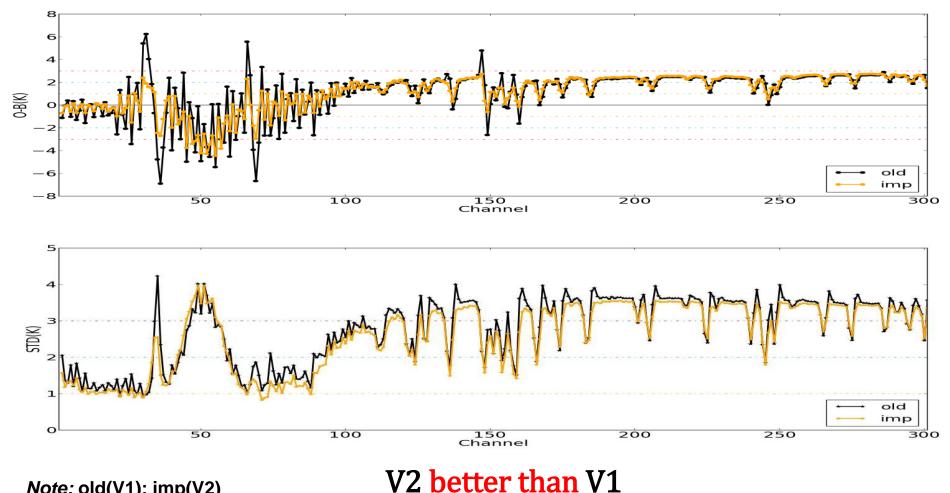
In general, the data format of GIIRS L1 data remains unchanged.


National Satellite Meteorological Center

Contacts: Qiang Guo(guoqiang@cma.gov.cn)

组织• 同打开• 刻录 素	所建文件夹			
☆ 收藏夹	名称	修改日期	类型	大小
1 下载	FY4AGIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_029V1	2019/8/13 9:37	HDF4 File	2,801 KB
扁 桌面	FY4AGIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_030V1	2019/8/13 9:39	HDF4 File	2,801 KB
💷 最近访问的位置	FY4AGIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_031V1	2019/8/13 9:39	HDF4 File	2,810 KB
	B FY4AGIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_032V1	2019/8/13 9:39	HDF4 File	2,809 KB
(1) 库	FY4AGIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_033V1	2019/8/13 9:39	HDF4 File	2,797 KB
■ 视频	FY4AGIIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_034V1	2019/8/13 9:39	HDF4 File	2,779 KB
	B FY4AGIIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_035V1	2019/8/13 9:39	HDF4 File	2,776 KB
〕文档	FY4AGIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_036V1	2019/8/13 9:39	HDF4 File	2,790 KB
→ 音乐	FY4AGIIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_037V1	2019/8/13 9:39	HDF4 File	2,805 KB
	FY4AGIIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_038V1	2019/8/13 9:39	HDF4 File	2,827 KB
🛸 计算机	FY4AGIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_039V1	2019/8/13 9:39	HDF4 File	2,847 KB
🧆 本地磁盘 (C:)	FY4AGIIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_040V1	2019/8/13 9:39	HDF4 File	2,860 KB
	FY4AGIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_041V1	2019/8/13 9:39	HDF4 File	2,865 KB
 FY4A_GIIRS (E:) 	FY4AGIIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_042V1	2019/8/13 9:39	HDF4 File	2,869 KB
	FY4AGIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_043V1	2019/8/13 9:40	HDF4 File	2,873 KB
	FY4AGIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_044V1	2019/8/13 9:40	HDF4 File	2,874 KB
EY4A	FY4AGIIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_045V1	2019/8/13 9:40	HDF4 File	2,874 KB
REFERENCE	FY4AGIIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_046V1	2019/8/13 9:40	HDF4 File	2,869 KB
	FY4AGIIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_047V1	2019/8/13 9:40	HDF4 File	2,855 KB
💽 网络	FY4AGIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_048V1	2019/8/13 9:40	HDF4 File	2,849 KB
	FY4AGIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_049V1	2019/8/13 9:40	HDF4 File	2,851 KB
	FY4AGIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_050V1	2019/8/13 9:41	HDF4 File	2,860 KB
	FY4AGIIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_051V1	2019/8/13 9:41	HDF4 File	2,871 KB
	FY4AGIIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_052V1	2019/8/13 9:41	HDF4 File	2,876 KB
	FY4AGIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_053V1	2019/8/13 9:41	HDF4 File	2,877 KB
	FY4AGIIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_054V1	2019/8/13 9:41	HDF4 File	2,872 KB
Data Resource	FY4AGIIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_055V1	2019/8/13 9:41	HDF4 File	2,869 KB
	FY4AGIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_056V1	2019/8/13 9:41	HDF4 File	2,871 KB
	FY4AGIIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_057V1	2019/8/13 9:43	HDF4 File	2,872 KB
	FY4A_GIRSN_RECX_1047E_L1_IRDMULT_NUL_20190813013000_20190813014044_016KM_058V1	2019/8/13 9:43	HDF4 File	2,871 KB
	FY4AGIRSN_REGX_1047E_L1IRDMULT_NUL_20190813013000_20190813014044_016KM_059V1	2019/8/13 9:43	HDF4 File	2,879 KB
	FY4AGIRSN_REGX_1047E_L1IRDMULT_NUL_20190813020000_20190813021044_016KM_001V2	2019/8/13 10:49	HDF4 File	1,595 KB
	FY4AGIRSN_REGX_1047E_L1IRDMULT_NUL_20190813020000_20190813021044_016KM_002V2	2019/8/13 10:50	HDF4 File	1,596 KB
	FY4AGIRSN_REGX_1047E_L1IRDMULT_NUL_20190813020000_20190813021044_016KM_003V2	2019/8/13 10:50	HDF4 File	1,595 KB
	FY4AGIRSN_REGX_1047E_L1IRDMULT_NUL_20190813020000_20190813021044_016KM_004V2	2019/8/13 10:51	HDF4 File	1,595 KB

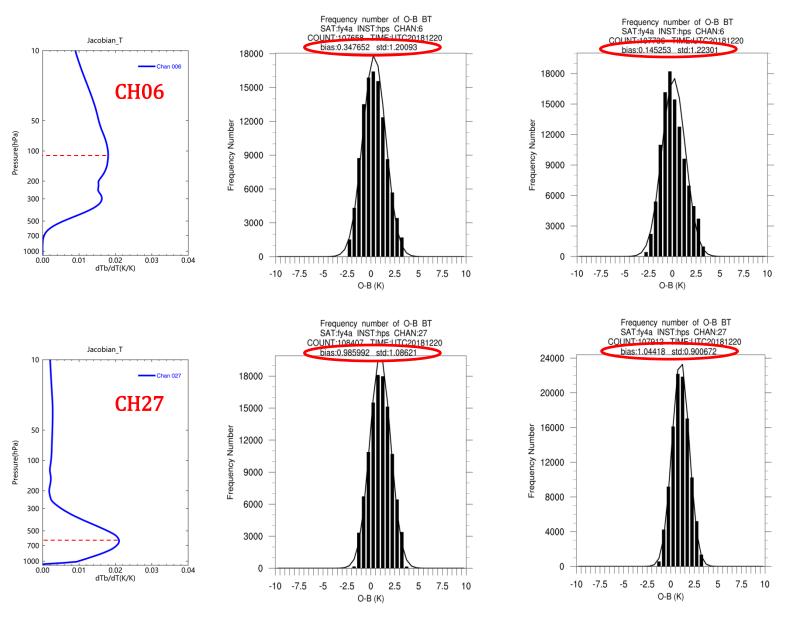
😋 🕞 - 🗼 ▶ 计算机 ▶ fy4 (\\10.24.38.20) (S:) ▶ FY4A ▶ GIIRS ▶ L1 ▶ IRD ▶ REGX ▶ 2019 ▶ 20190813

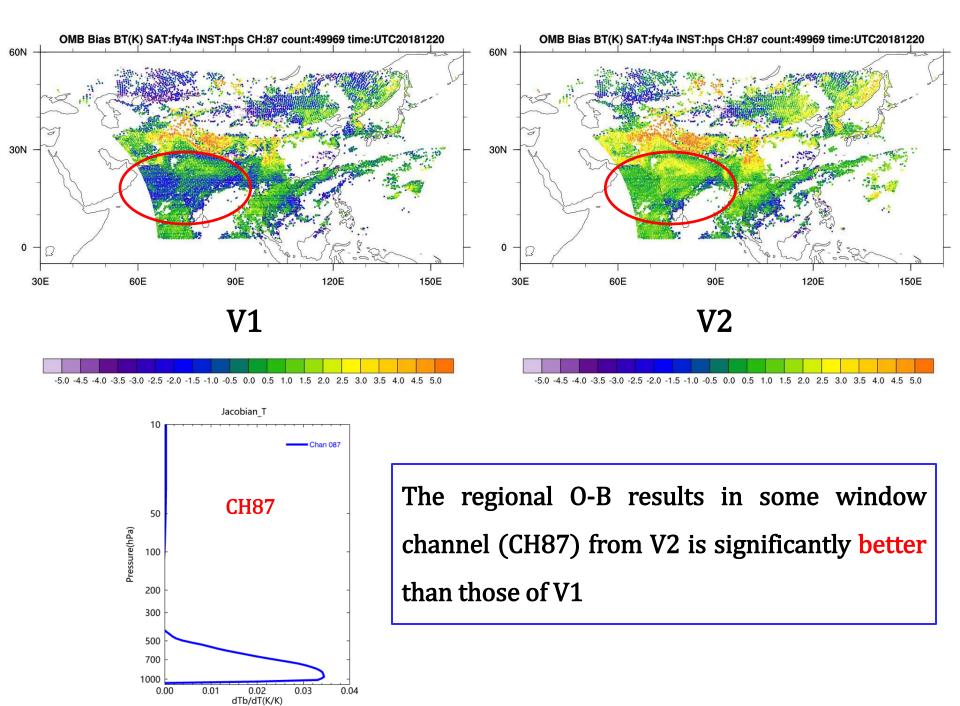


Sample Evaluation from GRAPES+RTTOVS

- Sample Data: 20181220, 4129files \checkmark
- Experts: Ruoyin Ying and Wei Han \checkmark

Reports: 1 document \checkmark

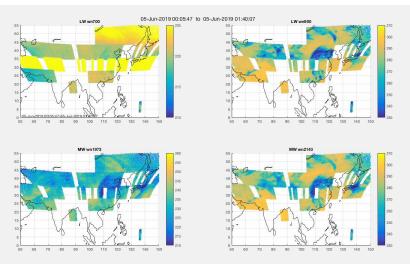

Effect Samples after QC : 110,000


Note: old(V1); imp(V2)

V1

V2

High level channel(ch06): comparable; Low level channel(ch27): V2 better

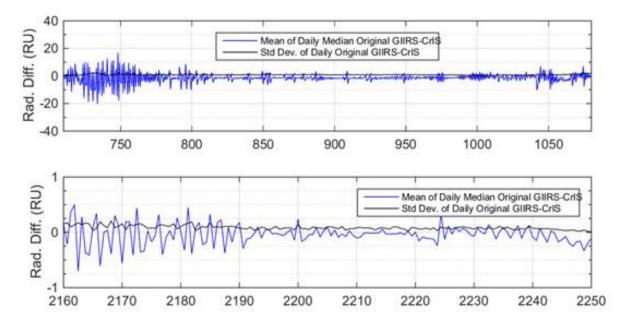

Independent Evaluations from International Counterpart (SSEC/UW)

- ✓ Sample data: 20190530~20190605, V1/V2(30031files for each)
- ✓ Experts: Paul Menzel, Hank Revercomb and Bob Knuteson
- ✓ Reports: 4 documents (doc/xls/mp4)

• Stability of Radiometric Feature

First, we want to acknowledge what appears to be an improvement of Version 2 in **fixing bad granules** from the original Version 1 data to **provide a more realistic regional field**. **Can you explain what improvements you have made to the radiometric calibration between V01 and V02?**

V01

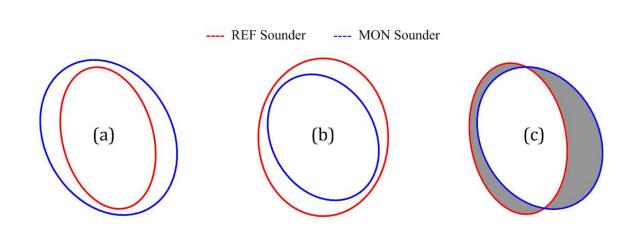


V02

• Radiometric Calibration (vs. CrIS)

We do see **similarities** to our CrIS radiometric comparisons. FY4A GIIRS V02 shows a cold bias **relative to CrIS** of about **1 Kelvin** for the warm window channels.

• Spectral Calibration (vs. CrIS)

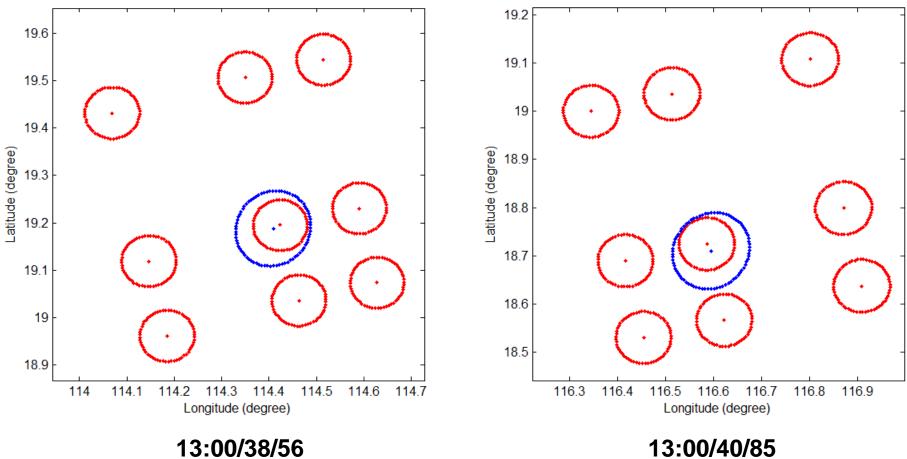

The basic conclusion is that the new version is **improved** in that the **spectral shift** of the longwave and midwave bands are **in better agreement**. The new Version 2 could be **greatly improved by implementing a spectral scale** that is shifted from the current scale..

Spatial Collocation: quasi-full-overlap (QFO) criterion

GSICS: recommended overlap pattern (UW)

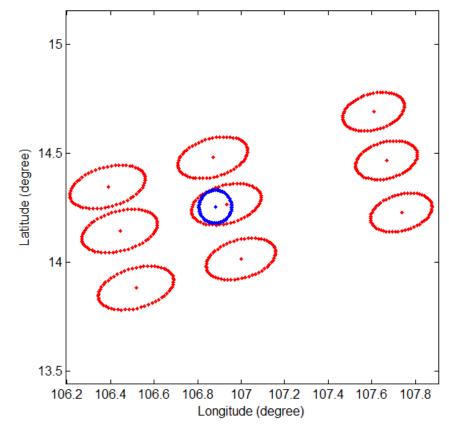
GeoCAVS: Overlap pattern far away from nadir (VW)

Different overlap relationships of footprints between GEO and LEO sounders

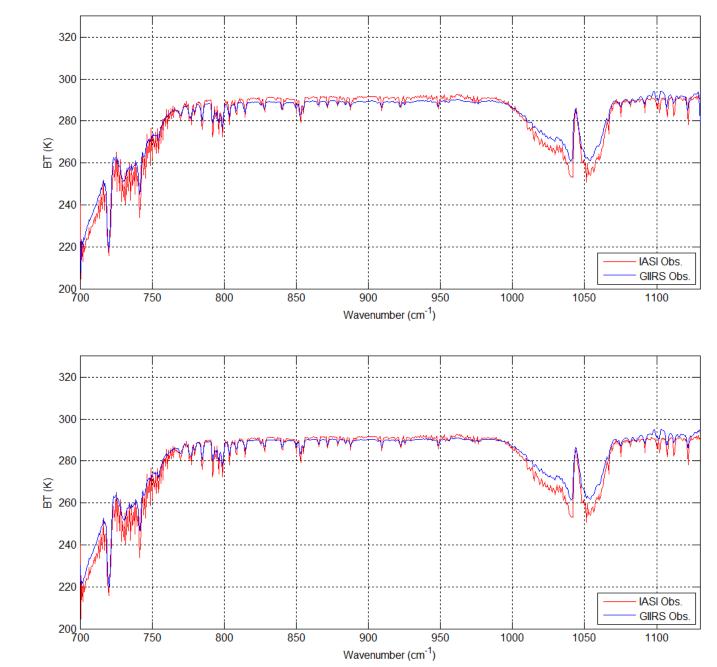

GEO-LEO/sounder

SNO Paired Results in LW band

Method	Time	Dwell Order	Detector Order	Time Difference	(LON, LAT)	
IMP	13:00	38	56	888s	(114.408958, 19.187902)	
		40	85	851s	(116.594940, 18.710238)	
	13:15	32	62	3s	(106.880951, 14.252997)	
		41	83	162s	(117.416008, 12.304740)	
		43	20	191s	(120.543831, 12.543633)	
SCC	13:00	38	56	888s	(114.408958, 19.187902)	
		40	85	851s	(116.594940, 18.710238)	
	13:15	32	62	3s	(106.880951, 14.252997)	
		42	101	220s	(118.211487, 9.519010)	


IMP: V2 without Spectral Correction SCC: V2 with Spectral Correction

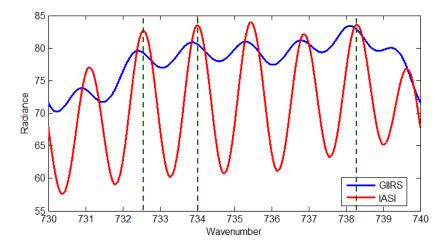
Footprint Size: IASI < GIIRS

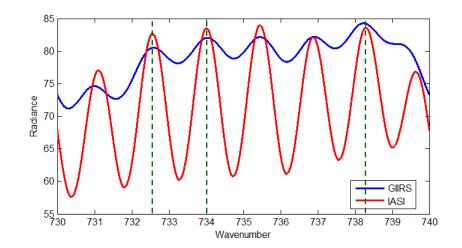

13:00/38/56

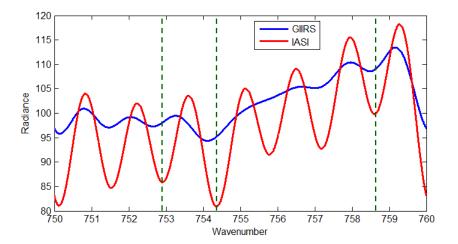
Footprint Size: IASI > GIIRS

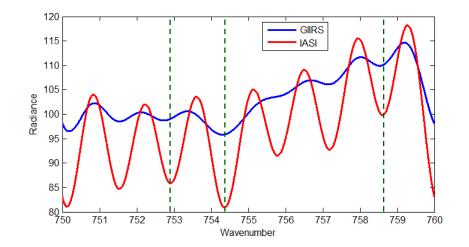
13:15/32/62

Example: 13:15/32/62

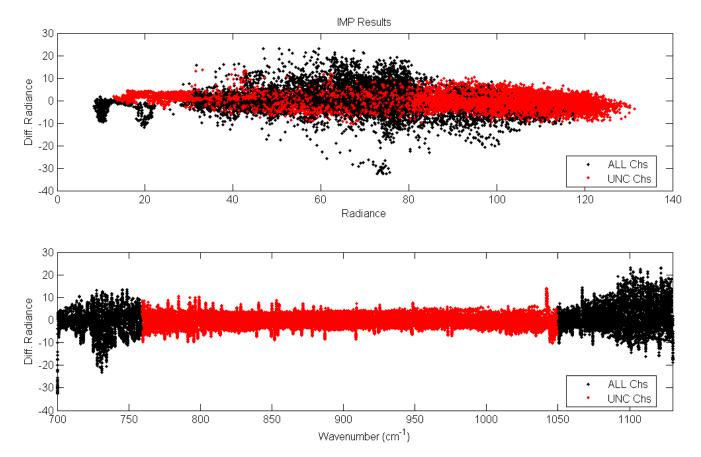


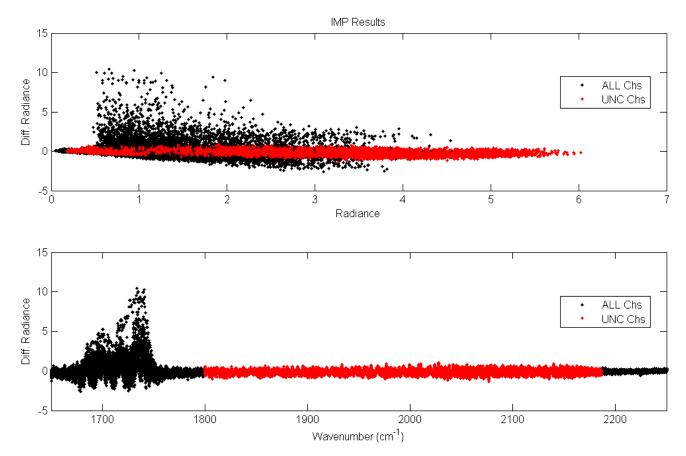

IMP

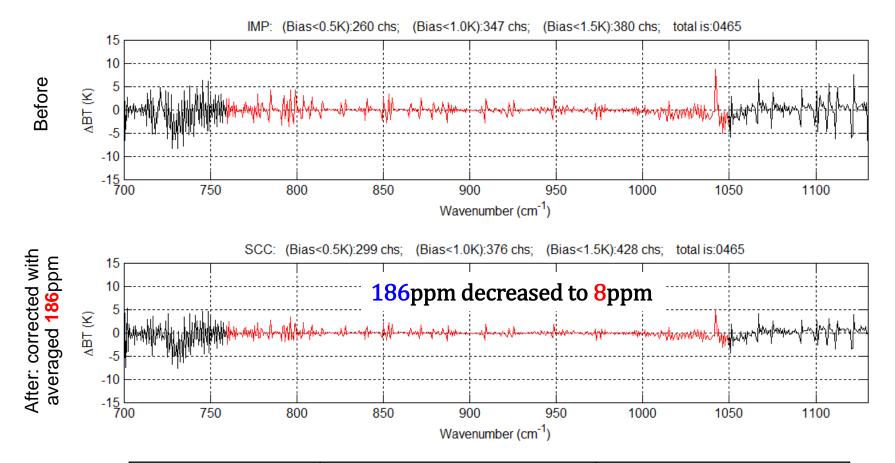

SCC

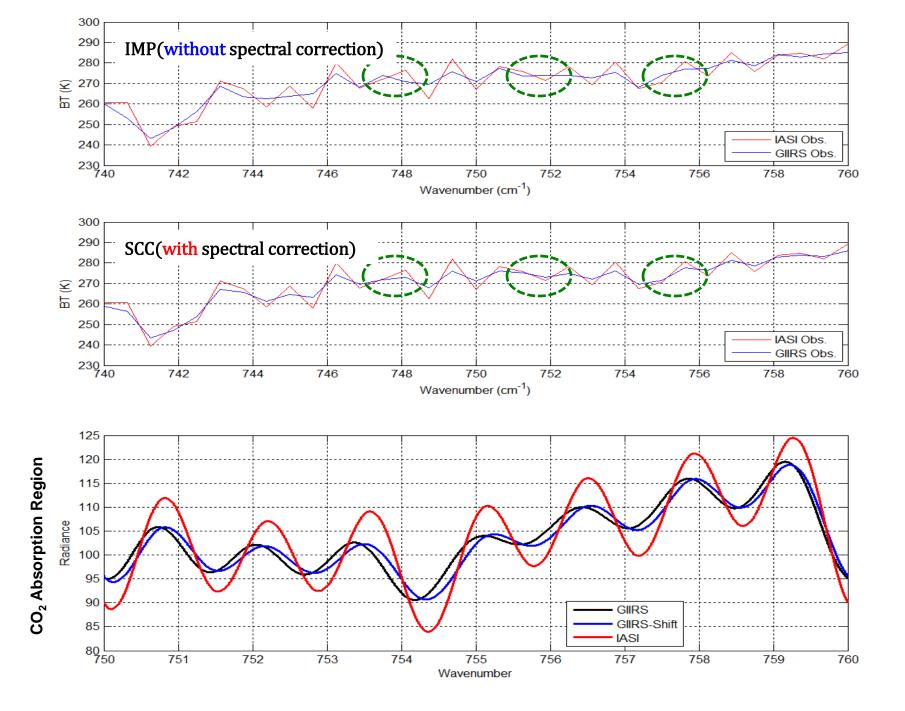

IMP

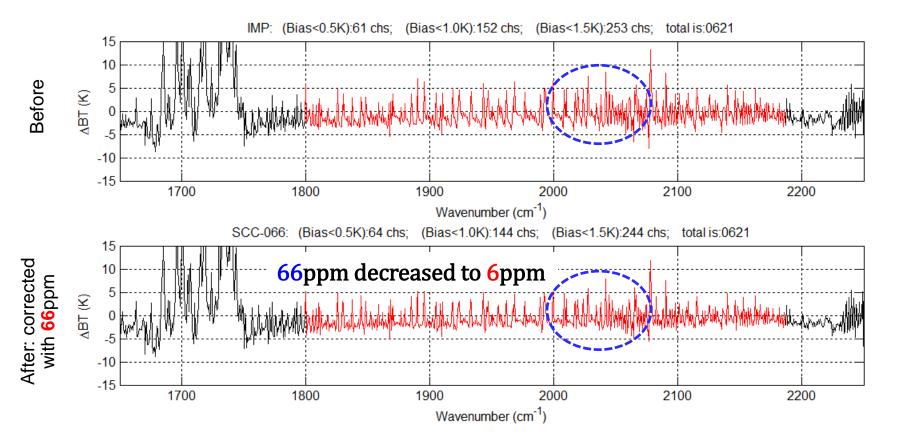
SCC



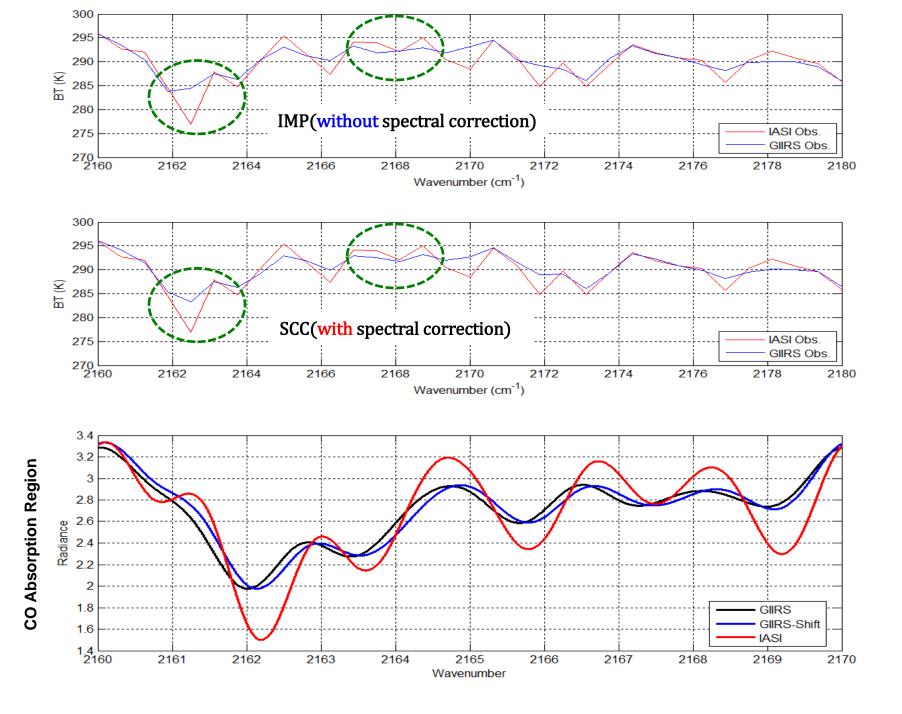




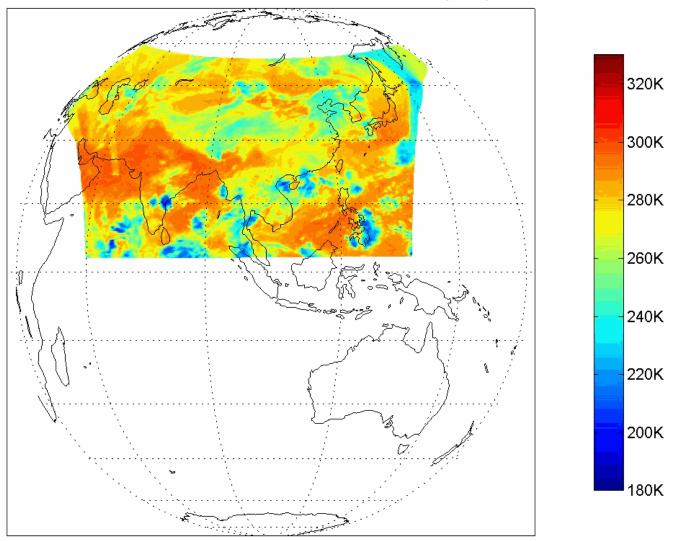

($20190530\mathchar`-20190605\mbox{ vs IASI}$) in MW band



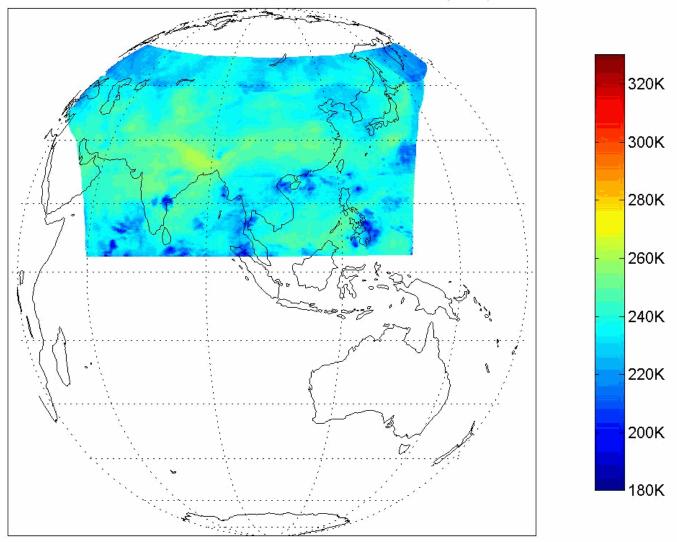
Radiometric Comparison Before and After Spectral Shift Correction for GIIRS V02 in LW Band



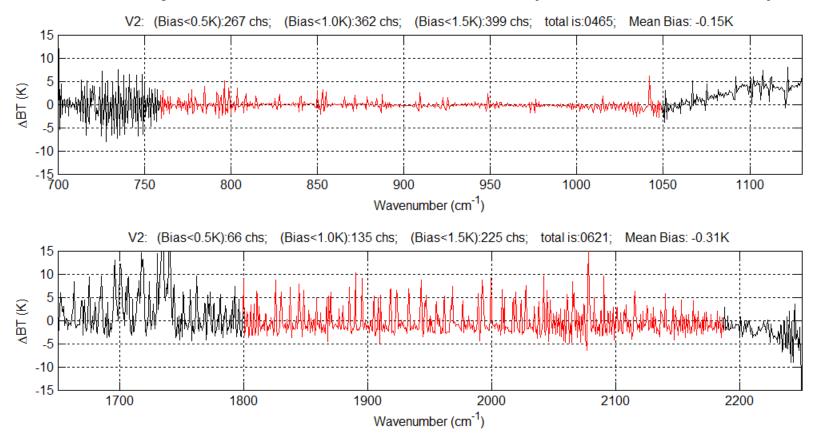
Radiometric Bias	IMP: V02 Before Correct (Channels/Percentage)	SCC: V02 After Correct (Channels/Percentage)
≤0.5K	260 /55.9%	299 /64.3%
≤1.0K	347 /74.6%	376 /80.9%
≤1.5K	380 /81.7%	428 /92.0%



Radiometric Comparison Before and After Spectral Shift Correction for GIIRS V02 in MW Band

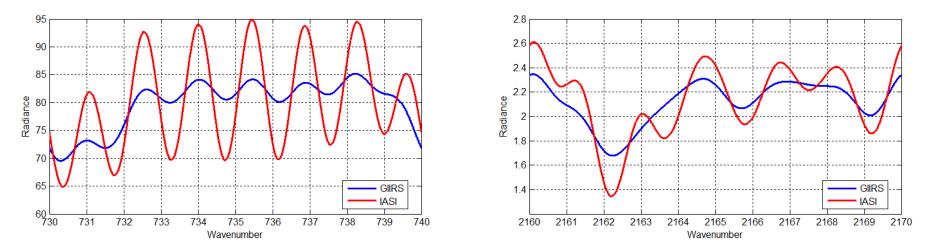

15-day Animation (LW: 0818.750cm⁻¹)

2019053000000-20190530013000:0818.750(cm⁻¹)

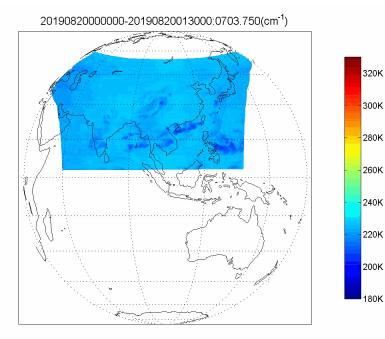


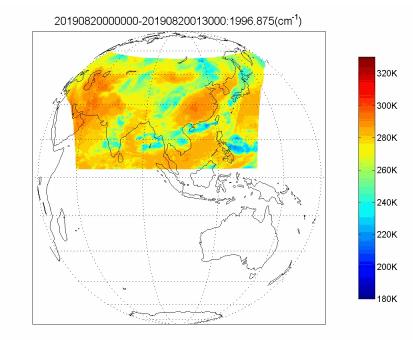
15-day Animation (MW: 1825.000cm⁻¹)

2019053000000-20190530013000:1825.000(cm⁻¹)

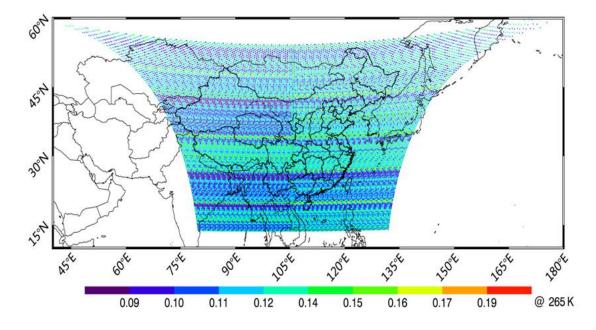


Inter-comparison between GIIRS and IASI (20190814~20190818)




band	Radiometric Calibration			Spectral Calibration		
band	≤0.5K	≤1.0K	≤1.5K	Mean Bias	Mean	STD
LW	267/465	362/465	399/465	-0.2K	6ppm	13ppm
MW	66/621	135/621	225/621	-0.3K	4ppm	15ppm

Results of Spectral Shifts Comparison


Latest 48h Animations of typical channels in both LW and MW bands

Follow-up Improvements

- Nonlinearity correction for atmospheric absorption channels;
- **Diurnal variation radiometric biases correction;**
- □ Angle-dependent variation radiometric biases correction;

Summary

- The new version (V2) L1 data of FY-4A/GIIRS is available since 0400 August 13, 2019 (UTC), where the improved spectral and radiometric calibration method are utilized.
- ✓ The Hamming apodization function is adopted in V2 L1 data of FY-4A/GIIRS.
- Compared with IASI, the radiometric biases of GIIRS are less than 0.5K for warm window channels, and its spectral shifts of both LW and MW bands are less than 8ppm.
- ✓ More improvements, i.e. nonlinearity, diurnal and angle-dependent bias corrections, will be done in the near future.
- ✓ The proposed spatial collocation method (QFO) is widely suitable for two Fourier Transfer Sounders (FTSs) intercomparison with not only GEO-LEO but also LEO-LEO modes, and is believed to be benefit to GSICS community for the relevant applications.

Thanks for your attention

Question?

