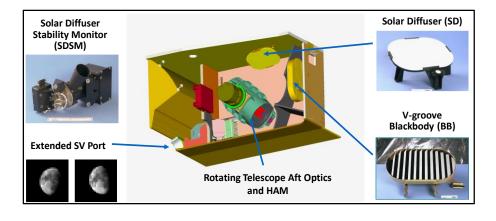


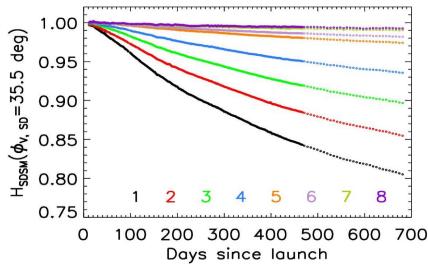
Status of N-20 VIIRS L1B Collections 1 and 2

X. Xiong¹, N. Lei², K. Twedt², K. Chiang², A. Angal², and A. Wu² ¹NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA ²SSAI, Lanham, MD 20706, USA

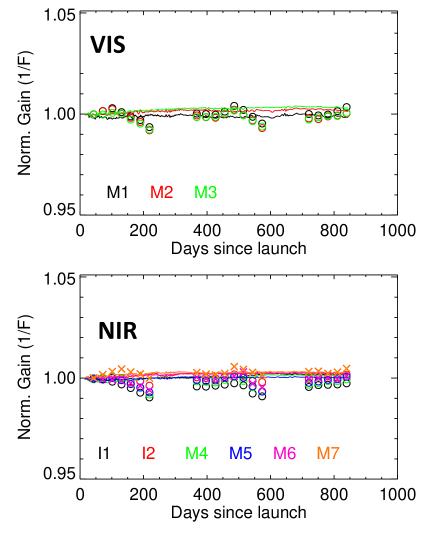
Contributions:


NASA VIIRS Characterization Support Team (VCST)

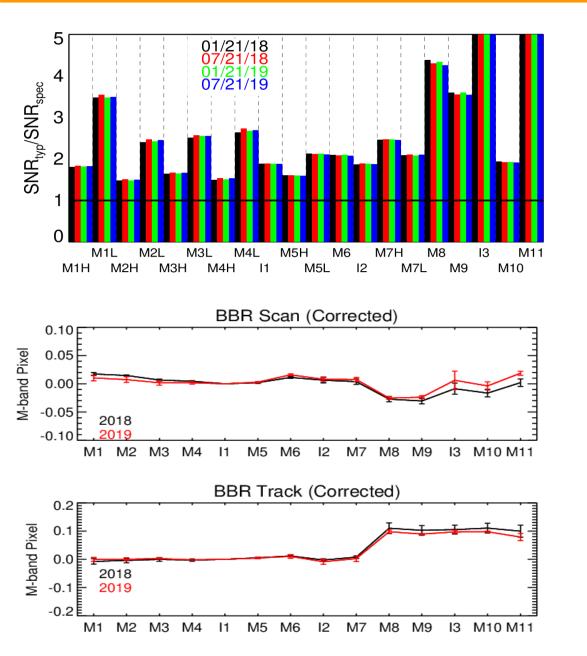
GSICS VIS/NIR Web Meeting March 18, 2020


Outline

- N-20 VIIRS Reflective Solar Band (RSB) Calibration Performance
- N-20 VIIRS L1B Improvements for RSB
- Status of N-20 VIIRS L1B Collections 1 and 2 (C1 and C2)
- Data Availability and Access
- Path Forward


N-20 VIIRS RSB Calibration Performance

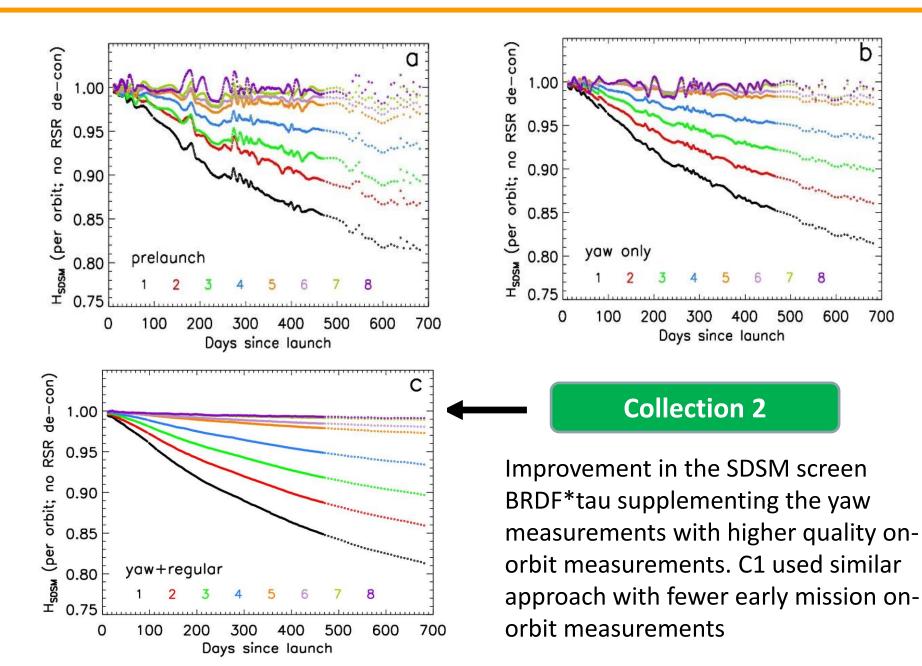
SD Degradation from SDSM



Most degradation at short wavelengths (similar to S-NPP VIIRS and MODIS)

RSB responses: extremely stable (better performance than S-NPP VIIRS)

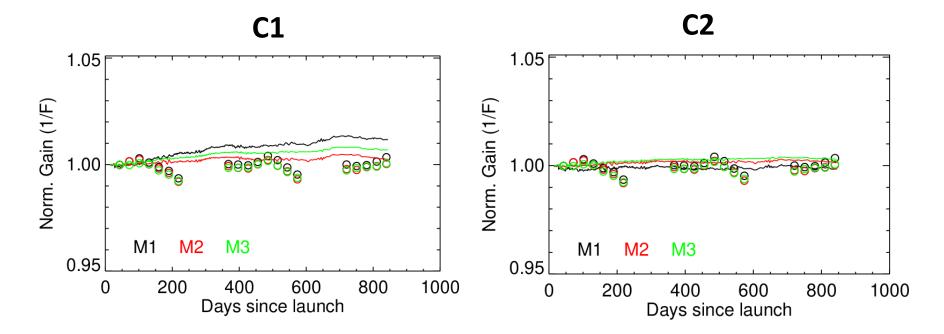
N-20 RSB Radiometric and Spatial Performance


SNRs are well above requirements and are expected to remain so for the foreseeable future

Stable band-to-band registration (BBR) in both along-scan and along-track directions

N-20 VIIRS L1B Improvements for RSB

- SD Screen transmittance functions further improved
 - higher quality regular on-orbit data + yaw maneuver data
- SD degradation (H-factor) improvements: angular dependence using SNPP VIIRS trends
- Noisy detector flag added to the L1B products
 - I3 D29 identified as a noisy detector since prelaunch
- C2 mission-long LUTs delivered in April 2019 and forward updates continued on an as needed basis
- L1B code transition from V3.0.0-rc to V3.0.0


N20 VIIRS Screen Characterization Improvements

N-20 VIIRS H-factor Improvements

$$H_{\text{RTA}} = H_{\text{SDSM}} \times \frac{1 + \alpha_{\text{RTA}}(\lambda)(1 - H_{\text{SDSM}})}{1 + \alpha_{\text{H}}(\lambda)(1 - H_{\text{SDSM}}) \times (\phi_{\text{H,SD}} - \phi_0)}$$

- Gains (C2) agree much better with lunar results than C1
- Improvements as large as 1.0% for M1

Status of N-20 VIIRS L1B Collections 1 and 2

- NASA SIPS L1B for N-20 (J-1)
 - C2: L1B V3.0.0 software (officially released in August 2018 to support both NOAA-20 and S-NPP), with C2 mission LUTs released by VCST with 2 months forward prediction (April 2019); AS 5200
 - C1: L1B V3.0.0-rc software (until Oct. 2018), V3.0.0 software (from Oct.
 2018), with C1.0 LUTs (until May 2019) and C2 LUT (from May 2019); AS 3194

LUTs	Code Base	# of LUTs	Delivery Time	Note
C1	L1B V3.0.0-rc +V3.0.0	5	2018.06 - 2019.02	Run for both S-NPP and J1 (N-20). Add different RTA encoder start value for J1. Modify J1 DNB GEO over extended mode. Introduce M11 process at Ops Night. Improve M13 radiometric resolution. Add moon phase and illumination for DNB pixel.
C2	L1B V3.0.0	9	2019.04 - 2020.03	improved screens, improved H-factor, and noisy detector flag

• Changes in V3.0.0 compared to V2.0.0

V3 software provides full support for VIIRS NOAA-20 (JPSS-1)

- Modified scaling and brightness temperature table for M13 to improve radiometric resolution, especially at the low scene level.
- Add moon phase and illumination for each L1B DNB pixel.
- Add lunar calibration option where background data is derived from EV, instead of SV sector, for granules captured during lunar maneuver sector rotation.
- Update DNB geolocation and move RTA and HAM encoder start from hardcoded value to element in GEO LUT.
- Add attitude, position and velocity vectors for the start and end of each scan.
- Update/correct several metadata elements.
- Consolidate files, remove redundant and unused code, reformat code to eliminate duplication and improve maintainability.

Data Availability and Access

- N-20 (J1) Collection 2 L1Bs data archive set (AS) is AS5200, currently available at: https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/5200/
- N-20 (J1) Collection 1 L1Bs data archive set (AS) is AS3194 POC for VIIRS Level-1 data: Carol Davidson
 <carol.c.davidson@nasa.gov>
- The NASA Land products (C2) are available at LAADS DAAC (Level-1 and Atmosphere Archive & Distribution System; Distributed Active Archive Center) via Earthdata

(https://earthdata.nasa.gov/).

POC for Earthdata account and data download: Gregory Ederer

<gregory.a.ederer@nasa.gov>

Path Forward

- Use multi-year lunar measurements to adjust H_{RTA} model parameter value on a regular basis
- Apply H-factor SD positional dependence when needed
- Monitor calibration performance (long-term stability, detector-todetector difference) using vicarious targets (desert, DCC)
- Calibration consistency with SNPP-VIIRS and Aqua MODIS