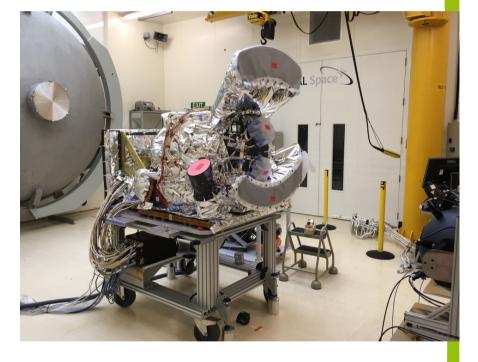


Comparison of Vicarious Calibration Results for SLSTR Visible and SWIR Channels

Dave Smith¹, Camille Desjardins², Yves Govaerts³, Jeff Czapla-Meyers⁴

- RAL Space, Science and Technologies Facilities Council, United Kingdom 1.
- **CNES** 2.
- 3. Rayference
- 4. University of Arizona

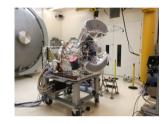
Science and Technology **Facilities** Council



Sea and Land Surface Temperature Radiometer

Nadir swath	>74°	(1400km swath)
Dual view swath	49°	(750 km)
Two telescopes	Φ 110 mm	n / 800mm focal length
Spectral bands	SWIR : 1	74μm, 10.85μm, 12μm .38μm, 1.61μm, 2.25 μm nm, 659nm, 859nm
Spatial Resolution	1km at n VIS/SWIF	adir for TIR, 0.5km for R
Radiometric quality	(MWIR)	mK (LWIR) – 50mK for VIS - SWIR
Radiometric accuracy		R channels plar channels relative to

Science and Technology Facilities Council


Sentinel-3 Series

2016 – Sentinel 3A

2018 – Sentinel 3B

2021 – Sentinel 3C

 Instrument Calibration Nov 2019 - ?

2023 – Sentinel-3D

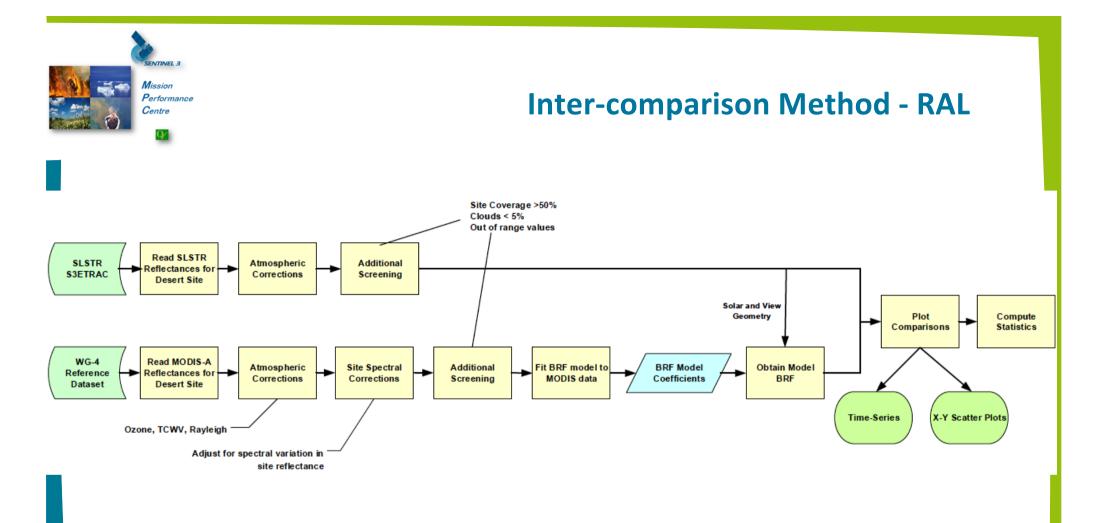
✤ Instrument Calibration Q1 2021

Launched 16-Feb-2016 C Launched 25-Apr-2018 C

Science and Technology Facilities Council

...

Vicarious Calibration Analyses


- Independent analyses have been performed to assess the radiometric calibration of the SLSTR VIS and SWIR channels.
- RAL Space for the MPC comparisons with AATSR and MODIS-A over desert sites
- CNES assessment using the SADE/MUSCLE vicarious calibration system
- Radiative Transfer Modelling of the Libya-4 desert site by Rayference.
- University of Arizona comparisons against in-situ field measurements of the Railroad Valley Playa RadCalNet site.
- The goal is to determine the offsets of SLSTR to a common reference that can be traced to a primary standard.
- Comparison and combination of the results is presented in detail in S3MPC.RAL.TN.005.

ACRI COSA 🖉 EUMETSAT

• This was to be presented at the S3VT in March.

Science and

Technology

Geometric corrections are needed to account for different overpass times

Corrections for spectral variations, atmosphere + site spectral profile are needed

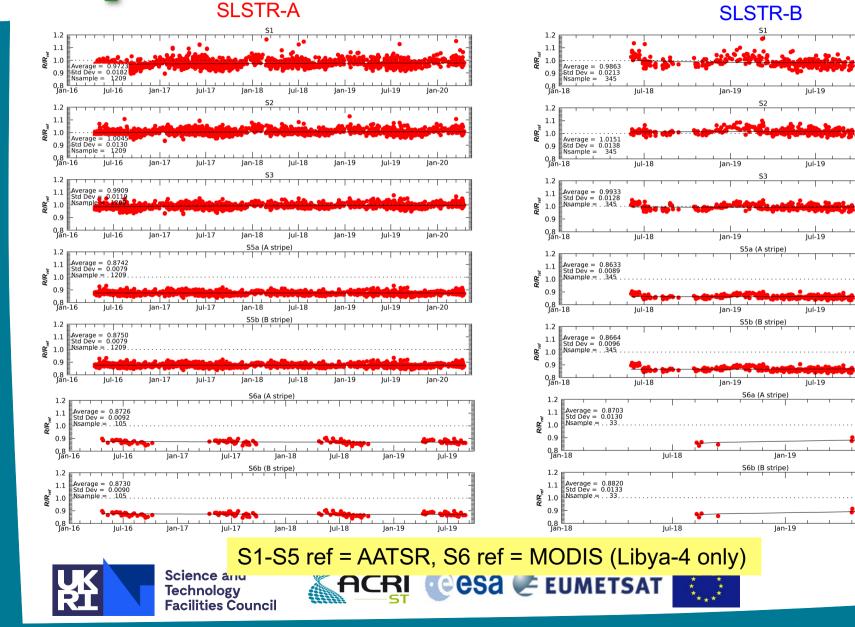
Calibration Sites Extracted using S3ETRAC

Site name	North Latitude	South Latitude	East Longitude	West Longitude	Latitude size	Longitude size
CEOS_ALGERIA-3	30.82	29.82	8.16	7.16	1	1
CEOS_ALGERIA-5	31.52	30.52	2.73	1.73	1	1
CEOS_LIBYA-1	24.92	23.92	13.85	12.85	1	1
CEOS_LIBYA-4	29.05	28.05	23.89	22.89	1	1
CEOS_MAURITANIA-1	19.9	18.9	-8.8	-9.8	1	1
CEOS_MAURITANIA-2	21.35	20.35	-8.28	-9.28	1	1
Algeria 1	24.25	23.35	0.05	-0.85	0.9	0.9
Algeria 2	26.54	25.64	-0.93	-1.83	0.9	0.9
Algeria 3	30.77	29.87	8.11	7.21	0.9	0.9
Algeria 4	30.49	29.59	6.04	5.14	0.9	0.9
Algeria 5	31.47	30.57	2.68	1.78	0.9	0.9
Arabia 1	19.33	18.43	47.21	46.31	0.9	0.9
Arabia 2	20.58	19.68	51.41	50.51	0.9	0.9
Arabia 3	29.37	28.47	44.18	43.28	0.9	0.9
Egypt 1	27.57	26.67	26.55	25.65	0.9	0.9
Libya 1	24.87	23.97	13.8	12.9	0.9	0.9
Libya 2	25.5	24.6	20.93	20.03	0.9	0.9
Libya 3	23.6	22.7	23.55	22.65	0.9	0.9
Libya 4	29	28.1	23.84	22.94	0.9	0.9
Mali 1	19.57	18.67	-4.4	-5.3	0.9	0.9
Mauritania 1	19.85	18.95	-8.85	-9.75	0.9	0.9
Mauritania 2	21.3	20.4	-8.33	-9.23	0.9	0.9
Niger 1	20.12	19.22	10.26	9.36	0.9	0.9
Niger 2	21.82	20.92	11.04	10.14	0.9	0.9
Niger 3	22.02	21.12	8.41	7.51	0.9	0.9
Sudan 1	22.19	21.29	28.67	27.77	0.9	0.9

SLSTR Trends

Jan-20

Jan-20


Jan-20

lan-20

Jan-20

Jul-19

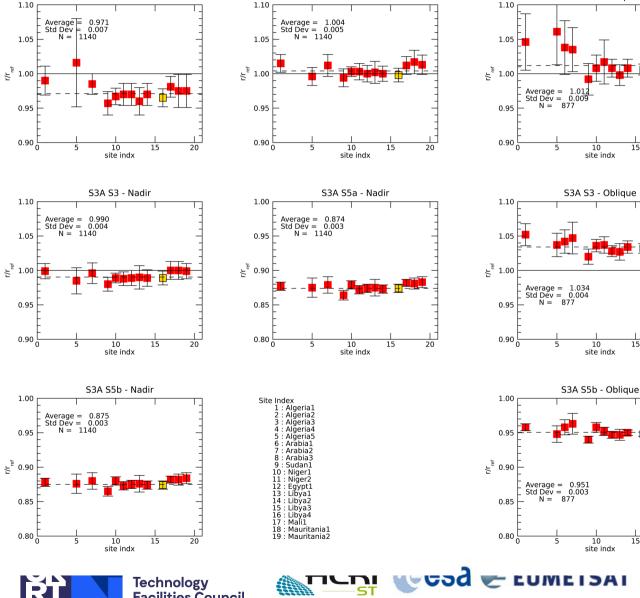
Jul-19

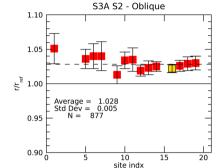
© RAL Space | S3MPC – 2017

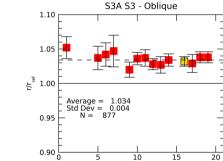
Technology

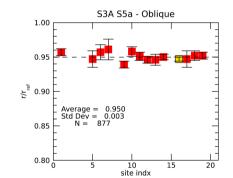
Facilities Council

S3A Comparisons over Deserts (RAL) S3A S2 - Nadir S3A S1 - Oblique


20


15


15


20

Site Index

1 : Algeria1 2 : Algeria2 3 : Algeria3

4 : Algeria 5 : Algeria 6 : Arabia

: Arabia2 8 : Arabia3 9 : Sudan1

10 : Niger1

11 : Niger2 12 : Egypt1 13 : Libya1

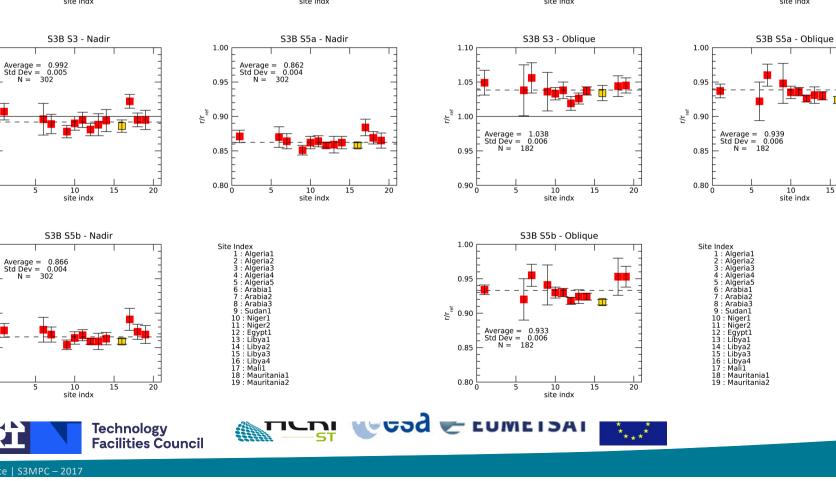
13 : Libya1 14 : Libya2 15 : Libya3 16 : Libya4 17 : Mali1 18 : Mauritania1 19 : Mauritania2

ي^{لي} 1.00

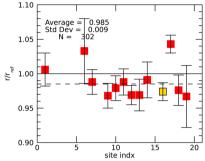
0.95

0.90

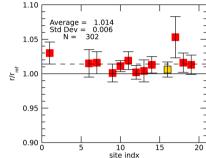
1.00

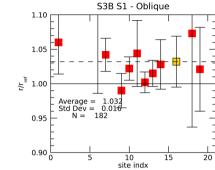

0.95

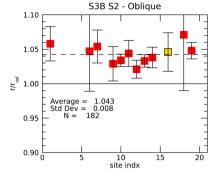
بے¹ 0.90


0.85

0.80


0.95 0.90 15 20 10 site indx 1.10 Average = 0.992 Std Dev = 0.005 N = 302 1.05


S3B S1 - Nadir


Mission

Performance Centre

S3B S2 - Nadir

15

10

site indx

20

S3B Comparisons over Deserts (RAL)

CNES Results

Nadir View

Method	S1		S2		S3		S5		S6	
	Rmeas/ Rref	StdDev								
Desert MODIS	1.050	0.033	1.028	0.030	1.030	0.025	0.892	0.017	0.894	0.029
Libya-4 MODIS	1.044	0.020	1.037	0.069	1.035	0.020	0.896	0.011	0.837	0.022
Desert MERIS	1.023	0.036	1.020	0.025	1.010	0.023	-	-	-	-
Libya-4 MERIS	1.021	0.018	1.021	0.015	1.012	0.014	-	-	-	-
Desert PARASOL	1.040	0.037	1.050	0.028	1.040	0.027	-	-	-	-
Libya-4 PARASOL	1.041	0.020	1.049	0.020	1.045	0.021	-	-	-	-
S2A	1.010	0.025	1.008	0.025	0.996	0.024	0.899	0.016	0.882	0.031
Libya-4 S2A	1.012	0.018	1.002	0.014	0.994	0.014	0.897	0.011	0.890	0.020
Desert L8	1.001	0.022	1.002	0.017	0.996	0.018	0.898	0.012	0.872	0.018
Libya-4 L8	1.003	0.015	1.002	0.013	0.995	0.013	0.899	0.009	0.872	0.017

Oblique View

Method	S1		S2		S3		S5		S6	
	Rmeas/ Rref	StdDev								
Desert		0.052		0.020		0.021		0.022		0.076
MODIS Desert	1.070	0.053	1.070	0.030	1.070	0.031	0.950	0.023	0.890	0.076
PARASOL	1.040	0.037	1.050	0.028	1.040	0.027	-	-	-	-

Reported uncertainties are standard deviations

Rayference (Yves Goaverts)

Nadir View

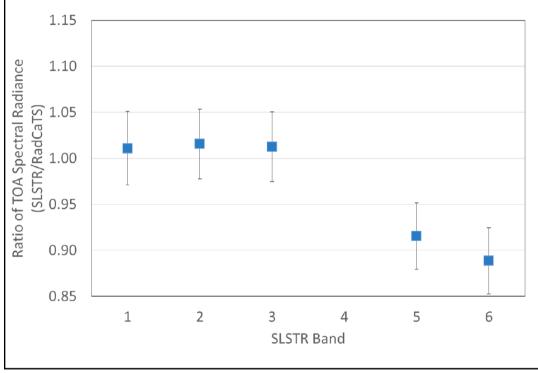
RTM	S1		S2		S3		S5		S6	
	Rmeas/Rref	StdDev								
6SV	1.037	0.013	1.022	0.009	1.016	0.010	0.892	0.007	0.887	0.011
LibRadtran	1.054	0.014	1.031	0.009	1.024	0.011	0.898	0.007	0.900	0.010
RTMOM	1.055	0.015	1.039	0.011	1.024	0.011	0.916	0.008	0.908	0.012
ARTDECO	1.054	0.014	1.035	0.009	1.024	0.009	0.908	0.007	0.909	0.009
Average	1.050	0.016	1.032	0.012	1.022	0.011	0.903	0.013	0.901	0.014
Combined	0.026		0.024		0.024		0.025		0.025	
Uncertainty										

Oblique View

RTM	S1		S2		S3		S5		S6	
	Rmeas/Rref	StdDev								
6SV	1.079	0.015	1.060	0.012	1.070	0.012	0.971	0.008	0.940	0.015
LibRadtran	1.094	0.018	1.072	0.013	1.074	0.013	0.978	0.008	0.961	0.013
RTMOM	1.097	0.017	1.080	0.012	1.077	0.012	1.003	0.007	0.971	0.011
ARTDECO	1.088	0.016	1.070	0.012	1.074	0.013	0.988	0.008	0.964	0.014
Average	1.089	0.018	1.070	0.015	1.074	0.012	0.985	0.016	0.959	0.018
Combined	0.028		0.026		0.024		0.026		0.028	
Uncertainty										

Libya-4 Radiometric Calibration Reference (LRCR) simulates the TOA BRF using a model of the surface BRF and 4 different Radiative Transfer Models (RTMs)

Reported uncertainties are standard deviations


University of Arizona

Sentinel-3A data over Railroad Valley Playa RadCalNet site.

11 Match-ups from 51 overpasses,

Analyses are constrained to 6.5° view zenith angle and 2x2 pixel region of interest (~1km x 1km)

Data for larger view angles were not included because the BRDF for the site does not currently extend beyond 6.5°.

S3A SLSTR at RadCaTS

Uncertainties are 4% based on the RadCalNet uncertainty statement

Jeff Czapla-Myers and Emma Woolliams "Uncertainty Analysis Statement – Railroad Valley USA", RadCalNet project document QA4EO-WGCV-IVO-CSP002, 2018

Science and Technology Facilities Council Results courtesy Jeff Czapla-Meyers, University of Arizona

COOSA 🗲 EUMETSAT

Alignment to Common Reference

- Results of comparisons depend on the reference sensor being used
- E.g. AATSR •
- To combine the results we need to align to a common reference.
- For S1-S3 MERIS is proposed as the common reference •
- For S5, S6 MODIS-Aqua is used •
- We chose these because their calibration has been verified through with other independent • methods (such as RadCalNet)
- We need to account for relative differences between the reference and common reference so that.

$$rel_diff' = \frac{R_{SLSTR}}{R_{ref}} \frac{R_{ref}}{R_{ref_new}}$$

Factors for AATSR for RAL comparisons

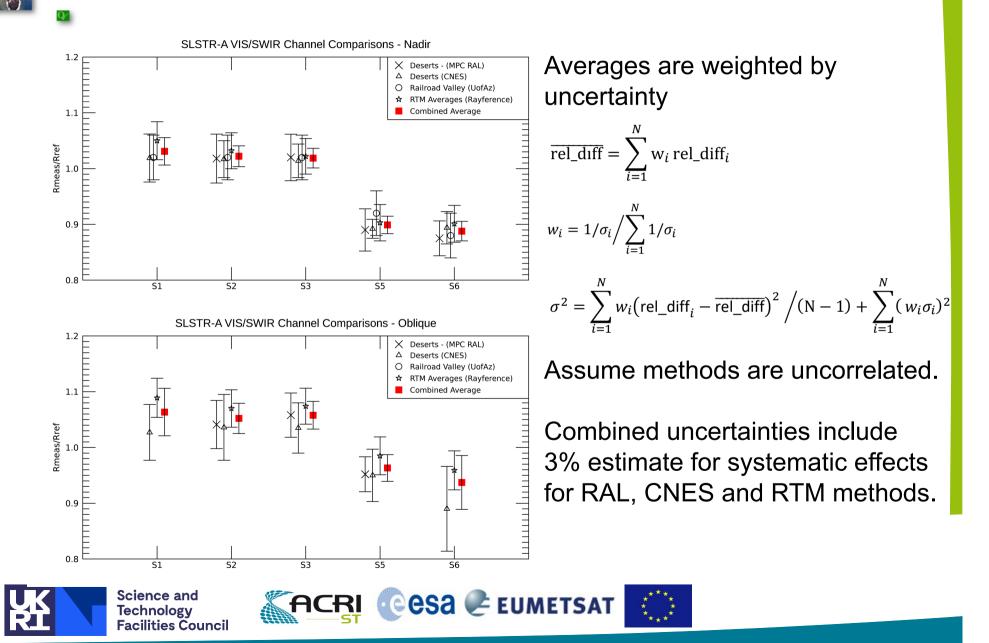
Method	\$1		S2		S3		S5		
	Rmeas/Rref	StdDev	Rmeas/Rref	StdDev	Rmeas/Rref	StdDev	Rmeas/Rref	StdDev	
MERIS	1.015	0.032	1.012	0.030	1.023	0.025	-	-	
MODIS	-	-	1.034	0.013	1.031	0.011	1.002	0.009	

Dave Smith and Caroline Cox, "(A)ATSR Solar Channel Calibration", IEEE Transactions on Geoscience and Remote Sensing, 51 (3), 1370-1382, 2013, 10.1109/TGRS.2012.2230333

Factors for MODIS, PARASOL to MERIS for CNES comparisons

Method	S1		S2		S3		
	Rmeas/Rref StdDev		Rmeas/Rref	StdDev	Rmeas/Rref	StdDev	
MODIS	0.974	0.027	0.986	0.018	0.988	0.017	
PARASOL	0.972	0.032	0.968	0.023	0.974	0.020	

Sophie Lacherade, Bertrand Fougnie, Patrice Henry and Phillipe Gamet, "Cross Calibration Over Desert Sites: Description, Methodology and Operational Implementation", IEEE Transactions on Geoscience and Remote Sensing, 51 (3), 1098-1113, 2013, 10.1109/TGRS.2012.2237061



Combined Results after Adjustment to Common Reference

Mission Performance Centre

Combined Results

Nadir View

Method	S1		S2		S3		S5		S6	
	Rmeas/Rref	Uncert								
MPC (RAL)	-	-	1.02	0.04	1.02	0.04	0.89	0.04	0.88	0.03
CNES	1.02	0.05	1.02	0.05	1.01	0.04	0.89	0.03	0.89	0.04
RTM	1.05	0.03	1.03	0.03	1.02	0.03	0.90	0.03	0.90	0.03
(Rayference)										
RailRoad	1.02	0.04	1.02	0.04	1.02	0.04	0.92	0.04	0.88	0.04
Valley										
Median	1.02		1.02		1.02		0.90		0.89	
Average	1.03	0.03	1.02	0.02	1.02	0.02	0.90	0.02	0.89	0.02
Weighted	1.03	0.03	1.02	0.02	1.02	0.02	0.90	0.02	0.89	0.02
Average										

Oblique View

Method	S1		S2		\$3		\$5		S6	
	Rmeas/Rref	Uncert								
MPC (RAL)	-	-	1.04	0.04	1.06	0.04	0.95	0.04	-	-
CNES	1.03	0.06	1.04	0.07	1.04	0.05	0.95	0.06	0.89	0.08
RTM	1.09	0.03	1.07	0.03	1.07	0.03	0.99	0.03	0.96	0.03
(Rayference)										
RailRoad	-	-	-	-	-	-		-	-	-
Valley										
Median	1.09		1.04		1.06		0.95		0.96	
Average	1.06	0.06	1.05	0.04	1.06	0.03	0.96	0.03	0.92	0.07
Weighted	1.07	0.05	1.05	0.03	1.06	0.03	0.97	0.03	0.94	0.05
Average										

Proposed Correction Factors

 Proposal is to adopt the following correction factors for the radiometric calibration based on the combined averages of the vicarious calibration results

			•	•	•		
Ν	а	d	ir	v	16	21	N
		-		_			

	S1	S2	\$3	S 5	S6
Correction	0.97	0.98	0.98	1.11	1.13
Uncertainty	0.03	0.02	0.02	0.02	0.02
Input	UoAz	UoAz	UoAz	UoAz	UoAz
Analysis	Rayference	MPC (RAL)	MPC (RAL)	MPC (RAL)	MPC (RAL)
	CNES	Rayference	Rayference	Rayference	Rayference
		CNES	CNES	CNES	CNES

Oblique View

	S1	S2	\$3	S5	S6
Correction	0.94	0.95	0.95	1.04	1.07
Uncertainty	0.05	0.03	0.03	0.03	0.05
Input	Rayference	MPC (RAL)	MPC (RAL)	MPC (RAL)	Rayference
Analysis	CNES	Rayference	Rayference	Rayference	CNES
		CNES	CNES	CNES	

Note: Uncertainty estimates are at k=1.

- We have compared the results of 4 different analysis of SLSTR top-of-atmosphere radiances over stable reference sites.
- The analyses show good agreement within the reported uncertainties. •
- We do not attempt to state which method is closest to the true value since all methods are relative to a different reference
- Using the combined weighted averages, we are able to provide vicarious adjustment factors to align SLSTR reflectances to MERIS and MODIS Aqua L1 calibrations.
- This is on the basis that MERIS and MODIS calibrations have been assessed over many years and are considered as reference sensors in the VIS/SWIR and relative differences with other sensors are reported.
- Alignment to a different reference sensor, e.g. Sentinel-2 would be possible provided that relative differences and uncertainty estimates are provided.
- Uncertainties in the calibration factors are based on those reported by the different teams and are the best estimate at the time of writing.

Science and Technology **Facilities** Council

