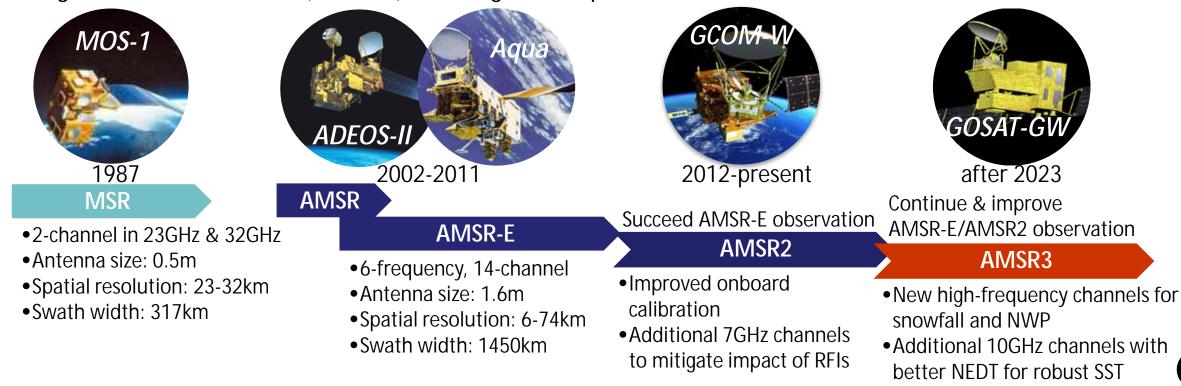


The Advanced Microwave Scanning Radiometer 3 (AMSR3) Updates

Misako Kachi, Hideyuki Fujii (JAXA Earth Observation Research Center) Marehito Kasahara, Kazuya Inaoka, Yasushi Kojima (JAXA GOSAT-GW Project Team)



History of Passive Microwave Observations

3

- With experience of development and operation of MSR, JAXA developed 1st generation of AMSR (AMSR and AMSR-E) with large antenna size and C-band channels. AMSR-E continuous its science observation about 9.5-year, and its high capabilities enable to expand utilizations in operational and research areas.
- 2nd generation of AMSR (AMSR2) was launched in 2012 and succeeds AMSR-E observations to establish its data utilization in various areas.
- 3rd generation of AMSR (AMSR3) is being developed and to be launched in JFY2023.

AMSR2 on GOM-W

Instrument	Advanced Microwave Scanning Radiometer 2 (AMSR2)
Altitude	705 km
Orbital inclination	98.2 deg
Local sun time at Ascending node	13 :30
Launch vehicle	H-IIA
Launch	May 18, 2012
Designed lifetime	5 years

- üSuccessor of Aqua/AMSR-E, providing continuous data for climate studies and operational applications
- üCarrying AMSR2, a multi-polarization and multi-frequency microwave imager
- **ü** Improving on-board calibration target has resulted reduction of annual TB variation due to calibration and improvement of TB stability
- ü Achieved designed mission life (5-year) on May 18, 2017, and continues observation
- üRecent Highlights
 - **ü** Version-up of SST and Sea Surface Wind Speed & release of new research products in Oct. 2020
 - üRelease of AMSR Environment Viewer on web in Jun. 2020

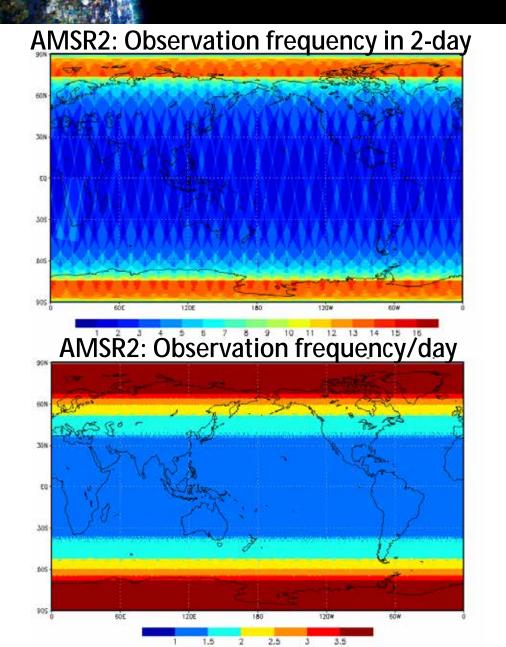
üCapturing TPW & SST variation during heavy rainfalls around Japan in Jul. 2020
üCapturing SST decrease during passing of three typhoons in Aug.-Sep. 2020
üCapturing second minimum sea ice extent in Sep. 2020

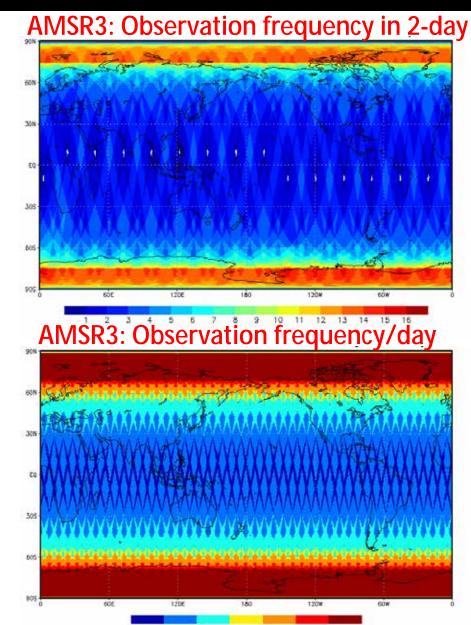
AMSR3 on GOSAT-GW: Global Observation SATellite for Greenhouse gases and Water cycle

- GOSAT-GW will carry two instruments, AMSR3 and TANSO-3.
 - AMSR3, led by JAXA, will succeed AMSR series observations adding new high-frequency channels for solid precipitation retrievals and water vapor analysis in NWP.
 - TANSO-3, led by Japanese Ministry of Environment (MOE) and National Institute of Environment Studies (NIES), will improve observation capability of greenhouse gases from GOSAT-2/TANSO-2.
 - Target launch is JFY2023 (Apr. 2023 Mar. 2024)
- Mission targets of AMSR3
 - To produce long-term continuous data record
 - To enhance operational utilization of near-real time data
 - weather forecast including hurricane analysis
 - fishery in coastal area
 - navigational assistance on arctic shipping route
 - new geophysical parameter products

GOSAT-GW Satellite Specifications

	Туре	Sun-synchronous, Sub-recurrent orbit	
Orbit	Altitude	666km, recurrent cycle 3days	
OIDIL		(same as GOSAT)	
	MLTAN	13:30 ± 15min (same as GCOM-W)	
Mass		2.6 ton (Including propellant)	
Power		> 5.3 kW	
Design life		> 7 years	
Launch vehicle		H-IIA rocket	
		Direct transmission with X-band: 400	
Mission data		Mbps	
downlink rate		Direct transmission with S-band:	
		1 Mbps (Only for AMSR3)	
Instrument		TANSO-3 (for GHG)	
		AMSR3 (for Water Cycle) 5	




- Orbit specification of GOSAT-GW is decided to satisfy requirements from both AMSR3 and TANSO-3 missions.
- Ascending orbit will be during daytime (same as GCOM-W), orbit altitude is same as GOSAT, and local sun time is same as GCOM-W. Orbiting number of one recurrent day is 44 and smaller compared to that of GCOM-W (233), so there are some differences in observation frequency.

Orbit conditions	GCOM-W/AMSR2	GOSAT-GW/AMSR3
Altitude	699.6 km	665.96 km
Inclination angle	98.2 degrees	98.06 degrees
Local sun time in Ascending node	13:30	13:30
Swath width	1600 km	1530 km
Recurrent day	16 days (233 orbits)	3 days (44 orbits)

AMSR3 Observation Frequency

Unlike AMSR2, AMSR3 cannot cover global area within 2-day and small missing areas (white) are remained.

Observation frequency of AMSR3 is **NOT homogeneous** for every longitude and there are fixed areas less than 1 observation/day (blue).

7

- Dec. 2019: Started GOSAT-GW Project
- Jun. 2020 Preliminary Design Review (PDR) of GOSAT-GW Satellite System To be completed by the end of JFY2020 (Mar. 2021)
 ØAug. 26, 2020: Completed AMSR3 PDR
 - ØDec. 23, 2020: Completed TANSO-3 PDR
- Changed the specification of Ka-band passband to reduce the future risk of RF interference from 5-G mobile communication system
- Being coordinated major characteristics and performances of G-band
- Being conducted manufacture and test of engineering models of AMSR3 component (ex. Gband antenna sub-system, Receivers)

Future Plan

- Critical Design Review (CDR) of AMSR3 in first half of JFY2021
- Completion of AMSR3 Development in second half of JFY2022
- Launch of GOSAT-GW Satellite in JFY2023

Ø AMSR3 Product will be released to the public about one year after the launch.

Specification of AMSR3 Instrument

AMSR3 Channel Sets

AMSR3 Sensor Characteristics		
Sensor type	Conical scanning total power	
	microwave radiometer	
Antenna	Off-set parabolic antenna	
Antenna	(φ2 .0m aperture)	
Swath width	> 1530m	
Quantization	12 bit	
Incidence angle	55 deg.	
	except 89GB, 166G,183G	
X-polarization	< -20dB	
Beam efficiency	> 90%	
Range	2.7-340K	
Sampling	5-10km	
interval		
Data rate	87.4 kbps (average)	
Life time	7 years	

* Red indicates differences from AMSR2

AIVISK3 Channel Sets			
Polarization	Band width [MHz]	NEDT (1 σ)	Beam width (spatial resolution)
H/V	350	< 0.34 K	1.8 ° (34km x 58km)
H/V	500	< 0.34 K	1.2 ° (22km x 39km)
H/V	100	< 0.70 K	1.2 ° (22km x 39km)
H/V	200	< 0.70 K	0.65 ° (12km x 21km)
H/V	400	< 0.60 K	0.75 ° (14km x 24km)
H/V	840	< 0.70 K (TBD)	0.35 ° (7km x 11km)
H/V	3000	< 1.20 K	0.15 ° (3km x 5km)
V	4000	< 1.50 K	0.3 ° (4km × 9km)
V	2000 × 2	< 1.50 K	0.27 ° (4km × 8km)
V	2000 × 2	< 1.50 K	0.27 ° (4km × 8km)
	H/V H/V H/V H/V H/V H/V H/V V V	Polarization Band width [MHz] H/V 350 H/V 500 H/V 500 H/V 100 H/V 200 H/V 400 H/V 3000 V 4000 V 2000 × 2	PolarizationBand width [MHz]NEDT (1 σ)H/V350< 0.34 K

Changes from AMSR2 including additional channels in red

Definition of AMSR3 Processing Levels

Processing Level	Definition
Level 0	AMSR3 data with quality check flags appended.
Level 1A	A scene data product that stores the antenna temperature count value converted by the
	radiometric and geometric correction processing from Level 0 data, the antenna
	temperature conversion coefficients, etc.
Level 1B	A scene data product that stores the brightness temperature converted from the Level 1A
	antenna temperature using the conversion coefficients.
Level 1R	A scene data product that stores the brightness temperature that is spatially resampled
	from Level 1B to match the center position and size of the Field of View (FOV) of each
	frequency band at each pixel.
Level 1C	A scene data product that stores the brightness temperature that is spatially resampled
	from Level 1B to match the center position of the FOV of each frequency band at each
	pixel.
Level 1H	A scene data product that stores the brightness temperature that is spatially resampled
	from Level 1B to match the center position of the footprint of each frequency band and to
	enhance spatial resolution of the low frequency bands at each pixel.
Level 2	A scene data product that stores a physical data retrieved from the brightness
	temperature at each pixel.
Level 3	A grid data product that stores the brightness temperature or physical data converted
	using grid processing and temporally statistical processing.

List of AMSR3 Products

Standard Product	Research Product			
Brightness Temperature (6-183GHz) (L1B)	FOV-center Matched Brightness Temperature (L1C)			
Resampled Brightness Temperature (6-183GHz) (L1R) Total Precipitable Water (over ocean & land) Integrated Cloud Liquid Water Content (over ocean)	High-resolution Brightness Temperature (L1H)			
	High-resolution Sea Surface Temperature (20km res.)			
	Sea Ice Motion Vector Land Surface Temperature Vegetation Water Content			
			Precipitation (liquid & solid)	Thin Ice Detection
			Sea Surface Temperature	Soil Moisture Content & Vegetation Water Content by
(6GHz & <mark>4-frequency</mark>)	Land Data Assimilation (L4)			
Sea Surface Wind Speed	Climate Data Record (CDR) for each parameter			
All Weather Sea Surface Wind Speed				
Sea Ice Concentration	(as of Oct. 2020			
High-resolution Sea Ice Concentration				
Soil Moisture Content				
Snow Depth (snow depth & SWE)				
Red indicates differences from AMSR2				