

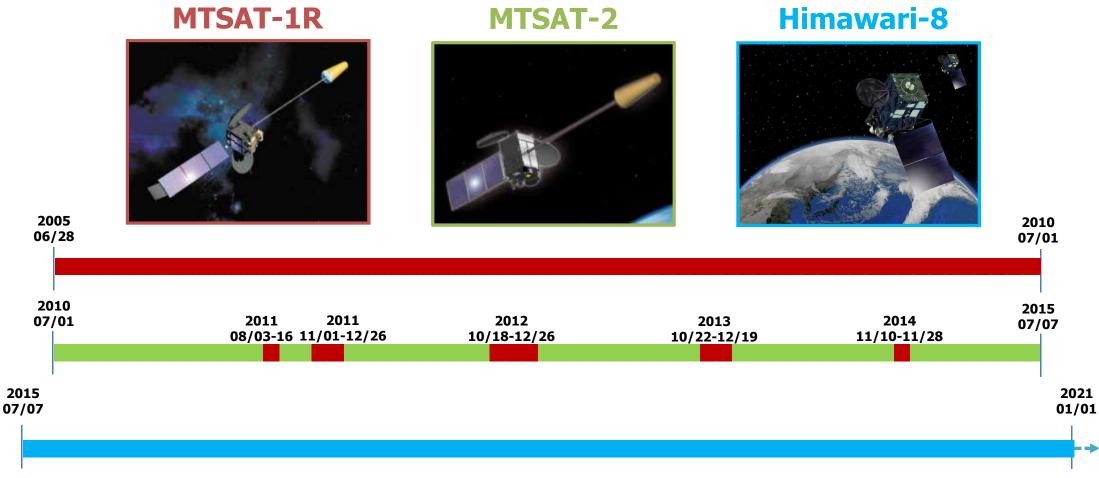
DCC analysis for MTSAT-1R/2 to Himawari-8

KODERA Kazuki, EIKI Misaki, TANAKA Hideaki and OKUYAMA Arata

@GSICS web meeting (GWRG: VNIR) on 10 June, 2021

Contents

- Period for applying DCC method
- DCC conditions
 - Options in DCC method
 - 1. Mode or Mean?
 - 2. Hu model vs. No ADM
 - 3. BT@10.3um


Robustness of PDF depending on BT thresholds for geo and leo.

- DCC results for our satellite
- Conclusion and future plan

The period of applying DCC method

• DCC method was applied to three JMA's satellites (Jun.2005 to Dec.2020)

Processing for 2021 is ongoing.

DCC conditions

In following page, DCC results are done under these conditions

MTSAT-1R/-2 DCC method

- GEO
 - Original resolution of MTSAT data
- LEO

 Aqua/MODIS C6.1 data (MYD02SSH) downloaded from NASA EARTH DATA web site.

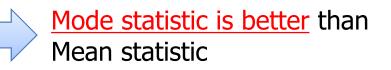
*The point spread correction function for MTSAT-1R data (Doelling, 2014) is Not applied.

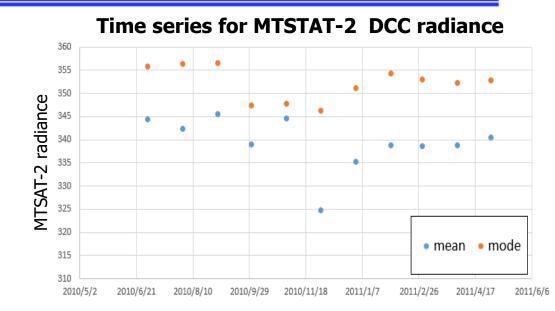
Himawari-8 DCC method

- GEO
 - 2km sub-sampled Himawari-8 data
- LEO
 - Aqua/MODIS C6 data (MYD02SSH) downloaded from NASA EARTH DATA web site.

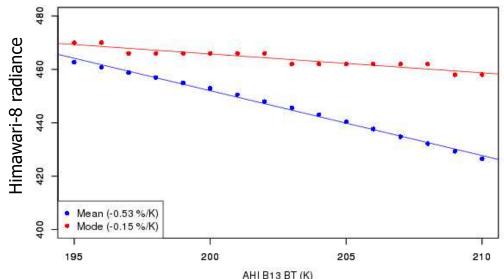
Conditions		GEO	LEO
Latitude boundary		$\pm 20^{\circ}$ at SSP	
Longitude boundary		$\pm 20^\circ$ at SSP	
GMT time rage (03:00LT)	MTSAT-1R/2	±1hrs	No restriction
	Himawari-8	±1.5hrs	
SZA,VZA range		< 40°	
VIS and IR sigma		3%,1K	No restriction
PDF statistic		Mode	
Applying ADM		Hu model	
BT threshold		205K	
SBAF		NASA web Tool (Scarino,2016)	

Mode or Mean ?

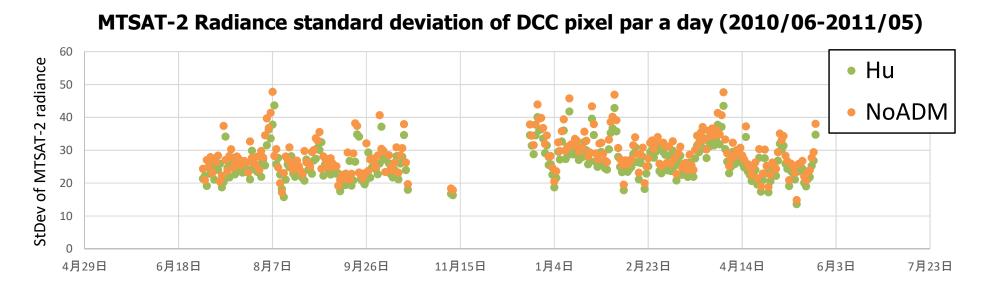

Robustness for time


 When checking MTSAT-2 the time-series, mode statistic is more stable than mean statistic.

> Mode statistic is better than Mean statistic


Robustness for BT threshold

 In Himawari8 Mode statistic is less dependent on the BT threshold than the mean statistic

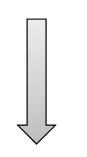


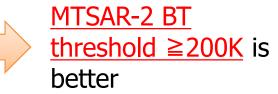
BT dependency for Himawari-8 DCC radiance

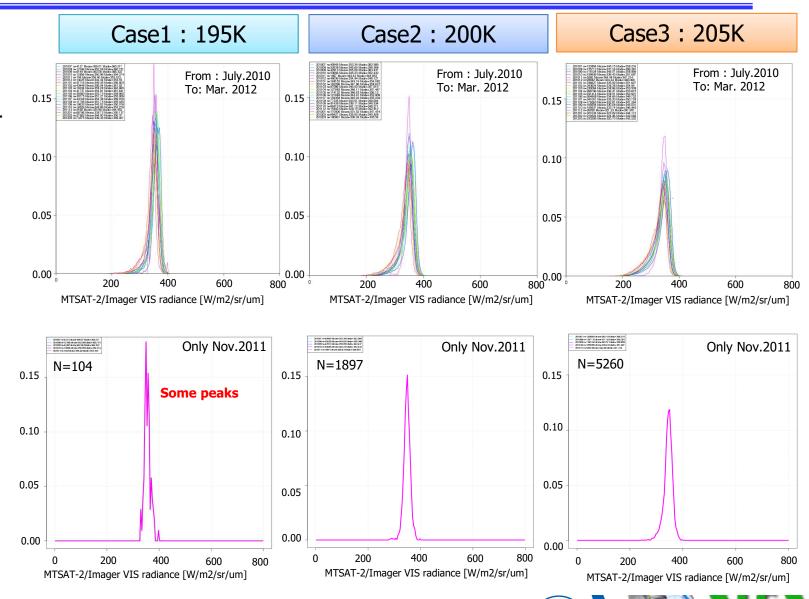
10 June 2021 Slide: 5

Hu model or No ADM ?

• The graph shows applying Hu model is less variation than no applying case.

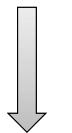

Applying Hu model is good in order to be small variation


Robustness of GEO PDF depending on BT thresholds


MTSAT-2

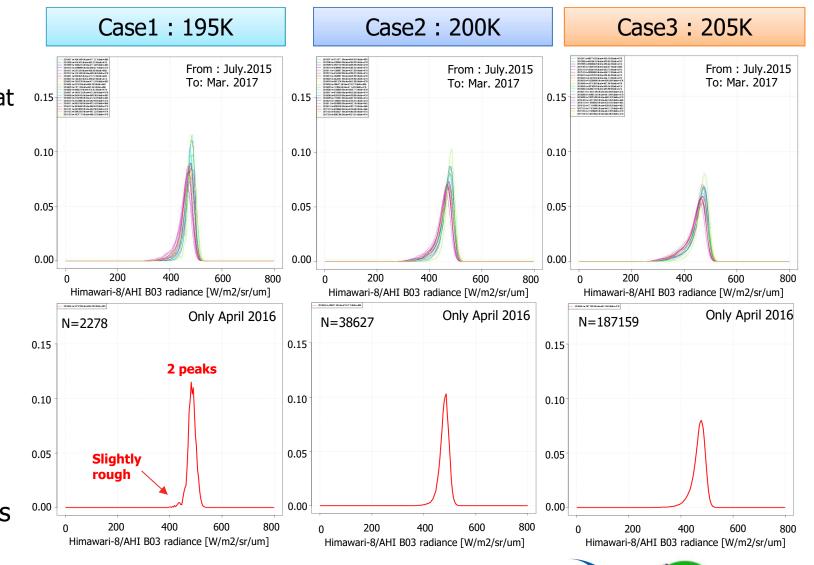
 MTSAT-2 PDF shapes at 195K look slightly rougher than ≥200 K

 For example, 195 K PDF shape on Nov.2011 is rougher than 200K and 205K PDF shapes.


Global Space-based

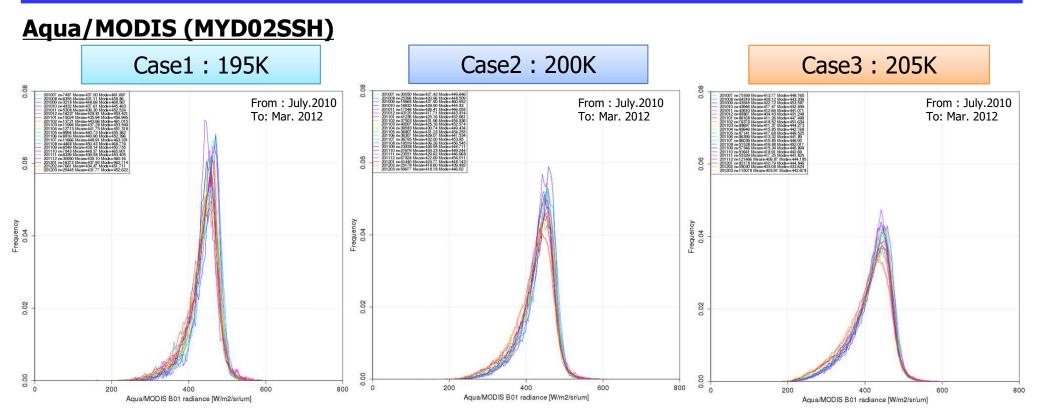
Inter-Calibration System

Robustness of GEO PDF depending on BT thresholds



 Himawari-8 PDF shapes at 195K also look slightly rougher than ≥200 K

• For example, 195 K PDF shape on April 2016 is rougher than 200K and 205K PDF shapes.


Himawari-8 BT threshold ≥200K is better

Global Spac

Inter-Calibration System

Robustness of LEO PDF depending on BT thresholds

- MODIS PDF shapes at 195K and 200K look slightly rougher than at 205K, although PDFs at 205K are not perfectly smooth like Himawri-8.
 - Due to getting low number of DCC pixels by using MYD02SSH (5 km by 5 km subsampling MODIS data)?
 - > Maybe, full resolution data is needed for more smooth PDFs

At 205K is better in case of using MYD02SSH

Investigation results of condition options

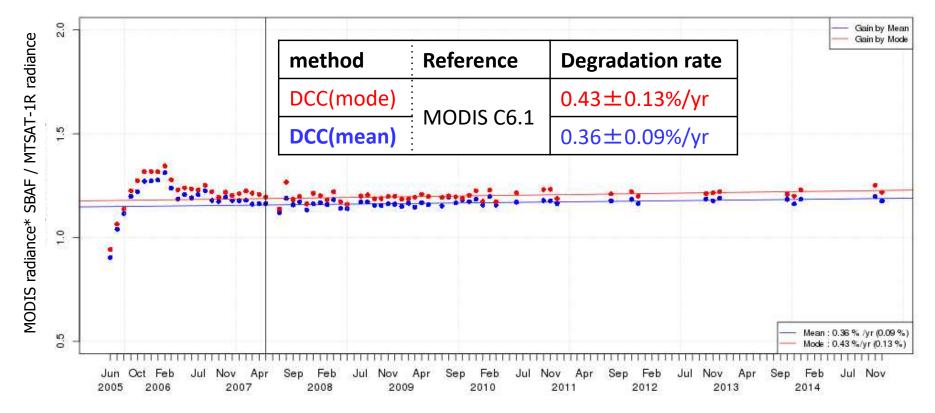
1. Mode or Mean

Mode statistic looks better

2. Hu model vs. no ADM

> Applying Hu model is better

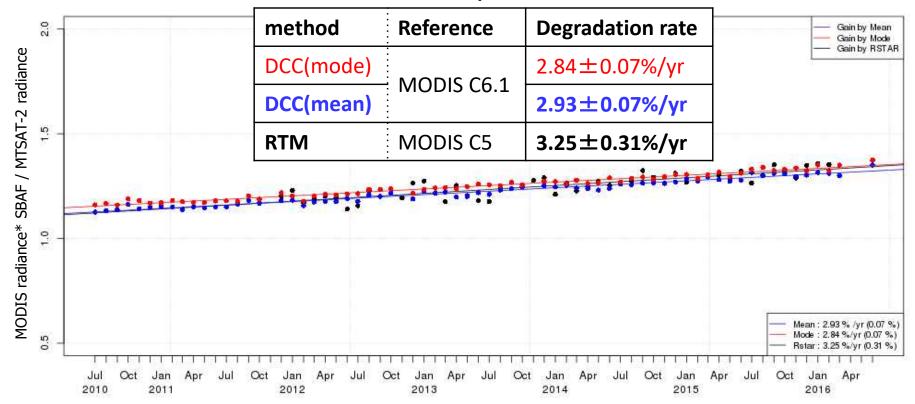
3. BT@10.3um


ightarrow GEO(Himawari satellites) : \ge 200K is better

> LEO (Aqua/MODIS) : 205K is better

 \rightarrow 205K is selected

MTSAT-1R vs. Aqua/MODIS time series


MTSAT-1R vs. Aqua/MODIS

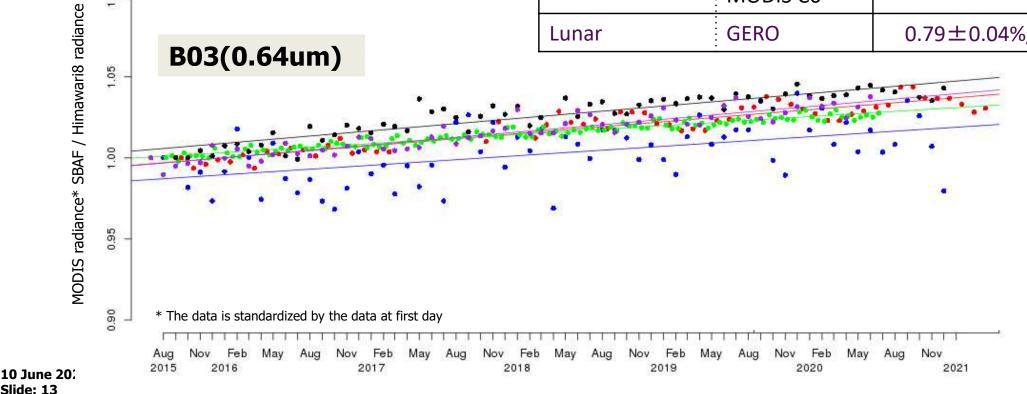
- There is rapid degradation in early period. After that, the gain(= MODIS rad. *SBAF) shows decrease and increase as pointed in Dave's paper (Doelling, 2014)
- The trend, (0.43 +/- 0.13%), is calculated for the period after May 2007.

10 June 2021 Slide: 11

MTSAT-2 vs. Aqua/MODIS time series

MTSAT-2 vs. Aqua/MODIS

- The degradation of MTSAT-2/Imager is $2.84 \pm 0.07\%$ /yr.
- This result is generally consistent with the result validated by using RSTAR radiative transfer model.
 - *In this case, we use MODIS C5 for RTM.


Himawari-8 vs. Aqua/MODIS time series

- The time-series trend of DCC method is good agreement with that of solar diffuser.
- But SE of DCC trend has larger than other methods.

1.10

Due to using sub-sampled MODIS data (MYD02SSH)?

Method	Reference	Degradation rate	
Ray-match	SNPP/VIIRS	0.74±0.04%/yr	
DCC(mode)	MODIS C6	0.59±0.12%/yr	
Solar Diffuser		0.55 ±0.01%/yr	
RTM	RTM with MODIS C6	$1 077 \pm 0.05\%/vr$	
Lunar	GERO	0.79±0.04%/yr	

Applying for Himawari-8 other VNIR bands

.05

06

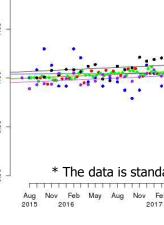
MODIS radiance* SBAF / Himawari8 radiance B01(0.47um) RayMatch : 0.38 %/yr (0.04 %) DCC: 0.05 %/yr (0.11 %) SolarD : 0.42 %/yr (0.01 %) RSTAR : 0.41 %/yr (0.04 %) * The data is standardized by the data at first day lunar : 0.39 %/yr (0.04 % Nov Feb May Aug Nov Feb May Aug 2021

- DCC method have larger variations than other methods in our implementation. (similar to B03 result)
- Degradation rate validated by DCC is slightly smaller than other methods.
 - Need more research

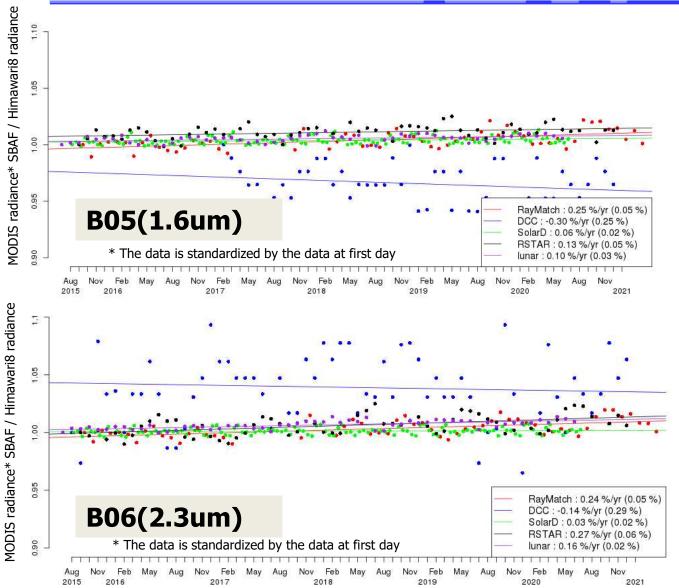
* The data is standardized by the data at first day

Nov Feb May Aug

B02(0.51um)



RavMatch : 0.50 %/yr (0.04 %)


DCC : 0.16 %/yr (0.13 %)

SolarD : 0.37 %/yr (0.02 %)

RSTAR : 0.52 %/yr (0.05 %)

Applying for Himawari-8 NIR bands

In NIR bands,

- Large variation
- Not consistent with other . methods
- Further improvement will be necessary.

Summary

- We have investigated the DCC conditions for our satellites.
 - 1. Mode statistic is good.
 - 2. applying Hu model is good due to be smaller variation.
 - 3. 205K BT threshold is better in case of using MYD02SSH. \geq 200K BT thresholds are good for our satellite.

205K is selected

 We applied DCC method to MTSAT-1R to Himwari-8 data (June.2005 to Dec.2020)

MTSAT-1R: Good agreement with Dave's paper (Doelling, 2014)

MTSAT-2: Good agreement with validation by using RTM

Himawari-8: Good agreement with the solar diffuser results but SE of DCC trend has larger than other methods.

Where do this large SE come from?

- We use sub-sampled MODIS data (MYD02SSH).
 - Should we use full resolution MODIS Data?
- Some parameters are not optimized yet?
- Other consideration is need ?

10 June 2021 Slide: 16

Further plan

- We consider...
 - DCC threshold optimization
 - Preparing the DCC method with VIIRS as reference
 - Investigation to apply DCC method for other bands
 - Application to Himawari-9 (operation in 2022)

END

• Thank you

