

### Status of the SLIMED model: Converging on the real Moon Hugh H. Kieffer = Celestial Reasonings hhkieffer@gmail.com

**Goal: Exactly how bright (spectral irradiance) is the Moon.** Envision an evolving process with more people, additional data, decreasing uncertainty.

**SLIMED model of lunar spectral irradiance.** Continuous in all 6 dimensions

**Concept. Use all available data with appropriate weight.** 

**Implimentation:** Source area for each instrument, consistent file formats, segregate control files and arrays, save files between major stages, time-based model names. System that can incorporate all useful data, progressively approach the real Moon.

Some figures are overloaded; Black background improves color separation. Apologies to color-blind folks.

# 30 sec Intro. What are Lunar Calibration and a Lunar Model?

Treat the Moon as a cheap (\$0), aged, mottled but stable ( 10<sup>-8</sup> /year) diffuse reflector that is routinely (monthly) available with wobbly but exactly known ( <0.000015° viewing, 4x10<sup>-12</sup> illumination) geometry (compliments of Newton, Einstein and JPL) Illuminated by a fairly stable lamp that also lights your science target.

Corollary: Lunar cal is at heart a reflectance-based calibration

Goal: what is the effective reflectance of this gift as a function of the illumination and viewing angles.



There is only one Moon; its reflectance must be smooth in all photometric and spectral dimensions.

SLIMED vrs SLIMFIT (2019):

SLIMED, each point has its own geometry and effective wavelength Avoids the spectral transform matrix

Normalize to a lunar reference spectrum, then fit with polynomials in geometry and "wave" (length  $\lambda$  or  $1/\lambda$  or  $\ln\lambda$ ) Usually omit wide (pan) bands from the fit. Large matrix, typically 100,000 x 35 In English is simple, math is a little complex

Libration effect has been a major challenge, [most instruments use narrow phase range] Use global albedo maps from lunar orbiters = MapLib

Evaluate all 24 instruments on hand with one model Useful for relative response comparisons; large differences

> SLIMED model is continuous in all dimensions. Residuals over all instruments are comparable to ROLO About 35 terms instead of 328 !

# Method

Ingest instrument data into standard formats. Processing all table driven. Select instruments to include in fit: Judgement Assign uncertainties (teams should do this).

Convert input location and time to photometric angles, adjust to std distances

Do a calibration. If clear indication of trends, fit and apply

Select instruments to include, assign Heft to apply to each.

- $\Rightarrow$   $\Rightarrow$  Make fitReady file: includes empirical gain factors
- 1 Once: Decide whether to apply MapLib correction
- **1** Select basis functions, and what power of wave, to include.
- $\uparrow \Rightarrow$  Do the fit. (~30 x 100,000 matrix inversion)
- ↑ ↑ ↓ Loop 1:4 times with tighter statistics
- 1 1 Key metric, Mean Absolute weighted Residual (MAR)
- **Adjust empirical gains**, fit again.
- ↑ ↑ ← Outer fit loop on this until convergence. Typically 15 times
   ↑
- ↑ Look at results. Can check for trends in calibrated data, apply to irrad. file.
   ↑ ← Modify Heft (and instrument selection) Do again

Output: A lunar model, and empirical gain factor for every instrument band Can then use this model to calibrate any/all instrument observations

# pseudo-Equations

Fit lunar albedo maps for several wavelengths at once
[1, x, y, x<sup>2</sup>, y<sup>2</sup>, xy] \* [1, p, p<sup>2</sup>, g,1/p] and each \* λ [any of 3 versions] 60 terms x=Viewer lon., y=Viewer lat., p=signed phase, g=absolute phase
Units: x and y in degree/10, p and g in radians
Keep Hlat=0, then p,x,y determine Hlon. Small x can force Hlat ≠ 0 to maintain p.
Can select any subset of terms; 18 do almost as well as 60. MapLib

Fit instrument irradiance: polynomial in: g, 1/g, x, y, Hlon\*x and Hlon\*y Units: x and y in degree, g in radians
h = Hlon,sub-solar longitude (~-p), radians, to odd powers
z =Hlat, sub-solar latitude, degree, linear only (small natural range)
Any of these terms may be polynomial in wave: λ or 1/λ or ln λ
Typically, 20 to 50 terms

### SLIMED method: isolate the high-res spectrum

#### Presume the lunar spectrum is product of high-resolution reference spectra of Sun and Moon, times smooth function TBD of geometry and wavelength.

The core of lunar models is lunar reflectance, the product lunar spectral irradiance in the form

$$E_{\oslash}(t,\lambda) = \underbrace{S_{\odot}(t,\lambda)}_{\text{Sun}} \ \frac{\Omega}{\pi D(t)} \bullet \underbrace{R_0(\lambda) \ \mathbf{L}(P,w) \ \underbrace{\mathbf{B}(P,w)}_{\text{Moon}}}_{\text{Moon}}$$

 $\Omega$  is the solid angle of the Moon at standard distance.

D is the  $1/R^2$  correction to standard distances: Viewer:Moon 384,400 km, Sun:Moon 1 AU.

The 3 terms right of the bullet constitute the lunar model;

the Disk Equivalent Reflectance (DER)  $R_{\odot}(\lambda, P)$ ,

a function of wavelength and five photometric angles represented by P.

 $R_0(\lambda)$  is the reference Moon, a high-resolution nominal surface reflection spectrum. **L** is an optional independent libration model derived from Lunar orbiter data. **B** represents the primary variation of lunar brightness with geometry and wavelength,

#### **B** does not have to address the high spectral-resolution features of lunar irradiance. This is the key to the SLIMED method

### Solar and lunar references

Requires a reference lunar spectral reflectance; still using the Apollo breccia mix used in ROLO.
Requires a reference solar spectral irradiance; recently adopted the HSRS [Coddington, 2021]
Total Solar Irradiance (TSI) variation based on [Kopp,2120] with recent extension.
Spectral sensitivity to TSI variation based on information from Greg Kopp, Then fit in log/log space with quadratic in λ that captures 98% of the sensitivity.

Solar spectral irradiance is implimented in SLIM as

$$S_{\odot}(\lambda, t) = S_0(\lambda) \underbrace{\left[1 + f(\lambda) \left(\frac{H(t)}{H_0} - 1\right)\right]}_{\mathcal{H}(\lambda, t)}$$

 $S_0(\lambda)$  is the solar reference spectrum : HSRS [Coddington,2021] The term in brackets is the solar variation model.

H(t) the total solar irradiance (TSI); linear interpolation of 1-day sampling with subscript 0 being the long-term average 1361.623 W/m<sup>2</sup>. The relative variation with wavelength  $f(\lambda)$  is a

quadratic fit in log/log space over 290:2412 nm to data provided by G. Kopp, yielding  $f=\exp(-0.338752-0.785894\ln\lambda+0.202152\ln^2\lambda)$ 

where  $\lambda$  is in micrometers; captures 98 % of the spectral variation.

# **The Lunar Reference Spectrum**

Telescope and Lab measures. ROLO and SLIM use ApolBrec05; Depend upon shape only, not the absolute level.

bandfig@41 Lunar surface albedo



Thu Jun 13 15:21:46 2019 Kieffer bandfia@41 2021Aug GSICS

### **The Basis Functions**

 ${f B}$  carries the variation of the lunar irradiance over angles and wavelength in the form

$$B_{ij}(P_i, w_j) = \sum_{k=0}^{K} F_k(P_i) \underbrace{\sum_{m=0}^{M_k} c_{km} w_j^m}_{\substack{m=0\\b_{jk}}} \quad \text{and} \quad \mathbf{B}(P, w) = \exp B_{ij}(P_i, w_j)$$

i is an observation index

j is a band index

k runs over the selected geometric basis functions  ${\cal F}$ 

- The  $F_k$  terms are the angles comprising P, and some cross-products, each may be polynomials of low degree.
- $M_k$  is the degree in wave for each of the k terms

 $c_{km}$  are the model coefficients

The individual terms in the right-hand sum are required to generate the model, however the  $b_{jk}$  can be used in evaluating the model.

The fit process derives  $c_{km}$ . Finding the band gains is minimization in a 168 dimensional space. Hard to ensure one has found the global minimum; hence approach slowly!

# Lunar orbiter based libration model: MapLib

A libration model based on lunar orbiters maps has the form

$$L(P_i, w_j) = \sum_k d_k \underbrace{\left[1, p, p^2, g, q\right] \# \left[1, x, y, x^2, y^2, xy\right]}_{\mathcal{L}} + \sum_k d'_k w \mathcal{L}$$

 $\mathbf{L}_{ij} = \exp L(P_i, w_j)$ 

where 
$$\mathcal{L}$$
 represents the 30 cross-terms of the two sets in brackets.

Any subset of the 60 terms can be selected to include in a fit.

Five angles, with 4 independencies, comprise P; p is the signed phase angle, increases through each lunation, changes sign (discontinuously) at full Moon x and y (or Vlon and Vlat): selenographic longitude and latitude of viewer h and z (or Hlon and Hlat): selenographic longitude and latitude of the Sun only odd powers of h are allowed to avoid near-degeneracy with -p.

Two variants of p are used for convenience in notation:  $g \equiv |p|$  is the absolute value of p and  $q \equiv 1/|p|$ 

# Doing a fit

The task is to choose the basis functions and find least-squares best coefficients of  $c_{km}$  for

$$\mathbf{B}(P,w) \longleftarrow \frac{\frac{\pi D_i}{\Omega} E_{ij}(P_i,\lambda_j)}{S_0(\lambda_j) \ \mathcal{H}(\lambda_j,t_i) \ R_0(P_0,\lambda_j) \ \mathbf{L}_{ij}(P,w)} \ G_j$$

Uncertainties are assigned to all measurements  $E_{ij}$ Everything on the right is known except the emperical gains  $G_j$ ; which are found from the residuals by iteration.

Always represent band by its effective or equivalent wavelength: RSR weighted by Sun \* Moon reference spectra =  $\int T(\lambda) S_0(\lambda) R_0(\lambda) d\lambda / \int S_0(\lambda) R_0(\lambda) d\lambda$ 

Limit the change of emperical gain  $\Delta \ln G_j$  for each band based on a probability that is scaled to the weighted mean fit residual  $\delta$  in that band:

$$\Delta \ln G_j = \pm \sqrt{2\pi} U' \left( P\left(\frac{\mid \delta \mid}{U'}\right) - \frac{1}{2} \right) \quad \text{Have since included} \\ \text{a damping factor}$$

U' is  $N_{\sigma}U_j$  with  $U_j$  the uncertainty in band j $N_{\sigma}$  is a pragmatic likelyhood estimate, typically 3. P(x) is the Gaussian probability function  $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$ 

This function is one-to-one for small values of  $\delta$  and approaches  $\pm N_{\sigma}U_j$  for large values.

### Instruments that provided irradiance

| Instrument      | Acro-       | - <u> </u> | Numb       | er of |        | Launch         | Obs. D         | ate            | ph     | ase an | gle   | _Num | ber_ |
|-----------------|-------------|------------|------------|-------|--------|----------------|----------------|----------------|--------|--------|-------|------|------|
|                 | nym         | band       | Luna       | time  | points | date           | First          | last           | min    | Abs    | max   | Wax  | Wane |
| LEO             |             |            |            |       |        |                |                |                |        |        |       |      |      |
| Terra-MODIS     | MODT        | 20         | <b>192</b> | 993   | 19860  | <b>99Dec18</b> | 00Mar24        | 19Feb23        | 47.9   | 47.9   | 81.5  | 0    | 993  |
| Aqua-MODIS      | MODA        | 19         | 175        | 743   | 14117  | 02May04        | 02Jun20        | 19Feb15        | -79.9  | 36.9   | -36.9 | 743  | 0    |
| SeaWiFS         | SeaW        | 8          | 144        | 204   | 1632   | 97Sep20        | 97Nov14        | <b>10Nov21</b> | -48.9  | 5.1    | 65.5  | 117  | 87   |
| Landsat-8-0LI   | OLI         | 9          | 70         | 1080  | 9720   | 13Feb11        | 13Mar26        | 19Jan21        | -8.4   | 5.4    | 9.7   | 30   | 1050 |
| Suomi-VIIRS     | VIIRS       | 14         | 70         | 71    | 994    | <b>110ct28</b> | 12Jan03        | 20Mar05        | -56.2  | 49.8   | -49.8 | 71   | 0    |
| NOAA-20-VIIRS   | VIIRN       | 14         | 28         | 28    | 392    | <b>17Nov18</b> | 17Dec28        | 21Mar24        | -52.0  | 50.1   | -50.1 | 28   | 0    |
| PLEIADES-A      | PleA        | 5          | 61         | 141   | 705    | <b>11Dec17</b> | 12Jan02        | 17Apr07        | -94.5  | 2.1    | 111.9 | 66   | 75   |
| PLEIADES-B      | PleB        | 5          | 42         | 339   | 1695   | <b>12Dec02</b> | 13Feb17        | 17Apr07        | -101.5 | 1.4    | 101.6 | 169  | 170  |
| E01-Hyperion    | НурМ        | 26         | 18         | 20    | 520    | 00Nov21        | 13Feb25        | 16Feb22        | -28.3  | 6.9    | 29.4  | 3    | 17   |
| GEO             |             |            |            |       |        |                |                |                |        |        |       |      |      |
| GOES-8          | GS8         | 1          | 38         | 44    | 44     | 94Apr13        | 95Jan08        | 03Feb20        | -91.1  | 4.3    | 84.1  | 19   | 25   |
| GOES-9          | GS9         | 1          | 7          | 9     | 9      | 95May23        | <b>95Dec12</b> | 98Apr12        | -70.4  | 10.0   | 82.5  | 5    | 4    |
| <b>GOES-10</b>  | <b>GS10</b> | 1          | 40         | 49    | 49     | 97Apr25        | 98Aug09        | 06Jun06        | -89.3  | 7.3    | 89.6  | 26   | 23   |
| G0ES-11         | <b>GS11</b> | 1          | 49         | 77    | 77     | 00May03        | 06Sep08        | <b>11Dec04</b> | -87.6  | 4.5    | 89.9  | 47   | 30   |
| G0ES-12         | <b>GS12</b> | 1          | 38         | 49    | 49     | 01Jul23        | 03Apr14        | <b>10Mar02</b> | -83.4  | 6.8    | 66.5  | 25   | 24   |
| G0ES-13         | <b>GS13</b> | 1          | 26         | 47    | 47     | 06May24        | <b>10Jul30</b> | <b>13Nov14</b> | -76.9  | 6.4    | 74.3  | 25   | 22   |
| G0ES-15         | <b>GS15</b> | 1          | 14         | 28    | 28     | 10Feb05        | <b>12Mar06</b> | <b>13Nov14</b> | -52.8  | 2.6    | 69.0  | 16   | 12   |
| GOES-16-ABI     | ABI16       | 6          | 15         | 115   | 690    | 16Nov03        | <b>19May14</b> | 20Jul10        | -76.0  | 5.6    | 69.9  | 67   | 48   |
| GOES-17-ABI     | ABI17       | 6          | 15         | 121   | 726    | 18Mar01        | 19May14        | 20Jul10        | -73.6  | 5.0    | 72.3  | 69   | 52   |
| MSG-1-SEVIRI    | SEV1        | 4          | 183        | 1209  | 4836   | 02Aug28        | 03Nov03        | <b>19Dec30</b> | -153.0 | 1.5    | 156.1 | 613  | 577  |
| MSG-2-SEVIRI    | SEV2        | 4          | 162        | 1152  | 4608   | 05Dec22        | <b>06Jul03</b> | <b>19Dec30</b> | -154.6 | 1.3    | 153.7 | 579  | 567  |
| MSG-3-SEVIRI    | SEV3        | 4          | 81         | 556   | 2224   | <b>12Jul05</b> | 13Jan01        | <b>19Dec19</b> | -152.4 | 1.6    | 153.1 | 291  | 255  |
| MSG-4-SEVIRI    | SEV4        | 4          | 31         | 199   | 796    | <b>15Jul15</b> | 15Aug28        | <b>19Dec21</b> | -145.4 | 3.6    | 147.6 | 105  | 96   |
| Other           |             |            |            |       |        |                |                |                |        |        |       |      |      |
| ROLO-v.3 2148m  | ROLOG       | 32         | 30         | 1249  | 39968  | 96Mar01        | 98Jul02        | 00Dec17        | -124.7 | 1.4    | 109.3 | 491  | 758  |
| Cramer 2367m    | NIST        | 9          | 1          | 2     | 18     | 12Nov          | 12Nov29        | 12Nov29        | 19.8   | 19.8   | 19.8  | 0    | 2    |
| AeroNetMaunaLoa | AerN        | 7          | 20         | 50    | 350    | 16Feb26        | 16Mar27        | 21Jun26        | -73.9  | 4.3    | 86.8  | 26   | 24   |
| MRO-HiRISE Mars | Hiris       | 3          | 1          | 4     | 12     | 05Aug12        | 16Nov19        | 16Nov19        | 69.6   | 69.6   | 69.6  | 0    | 4    |

Several LEO have narrow range of phase angle Into the model: all LEO, ROLOG, NIST and AerN. GEO all have more scatter

# **Preparation: Wild points and Trends**

Look for points that are statistically unlikely (actually a huge nuisance), assign huge uncertainty

Five kinds of trend fits: use simplest that works well  $Y = c_0 + c_1 t$   $Y = c_1 e^{-t/\tau}$   $Y = y_1 + (y_2 - y_1) e^{-t/\tau}$   $Y = c_0 + c_1 t + c_2 e^{-t/\tau}$  Used for VIIRS  $Y = c_0 + c_1 e^{-t/\tau} + c_2 e^{-t/\tau'}$ 

# Estimate libration effect using Clementine maps

Sources:

Clementine: all nadir, so shadows increase pole-ward relative to Earth view UVVIS (5 bands) to the poles, noisy beyond ±59° NIR (6 bands, omit longest two; thermal influence), to ±70° Lunar Orbiter Laser Altimeter, LOLA, 1.084 µm, to the poles, nadir, 0-phase

Source maps generally high resolution; reduce to 8 pixels/degree Fill poles with bland average where needed; 6% of view Synthesize orthographic image assuming Lunar-Lambert photometry A mix of Lambertian and Lommell-Seeliger photometric function Lambert fraction increases with absolute phase angle Normalize to zero libration

Compute grid of irradiance:

Vlon and Vlat: [-8, -4, 0, +4, +8], 25 points p=Phase angle: [3,8,14,20,30,40,50,60,70,80,90-] and – these, 22 points Total of 550 points / band

5500 points. About 20 terms models most of the effect

# Synthetic Moon based on LOLA albedo

8 pixel/deg Simple cylindrical map Re-projected to 700 pixel diameter

> Phase -45° Vlon +8 Vlat -4 Hlat 0

Actually bypass the projection and use pixel apparent solid angles



### **MapLib: Libration effect, 4 dimensions** Wavelength, phase, Viewer longitude and latitude



Small variation with wavelength, and shape is suspicious

ROLO treated this as 2-D, linear in Vlon and Vlat

# **Libration coefficients: Maps and SLIMED**



+7, SeaWiFS and OLI

#### Some agreement

# Model flexibility: joy and curse

Based on many [11] instruments, 90,000 measurements. Includes TSI and SSI variation.
Optional: libration model derived from 10 maps by Lunar orbiters. 

Basis functions (BF): abs. phase angle; Viewer Longitude, latitude; Solar lat., lon. Selected polynomials and cross-products of each, and those times polynomials in λ

#### **Decisions: some of the categories**

- 1) Which instruments to include in model.
- 2) Teams rarely provide uncertainties, must be assigned.
- 3) Heft: Overall weighting factor for each instrument to address abundance of points, apparent consistency, ...
- 4) Use MapLib? Include solar variation?
- 5) Which of the thousands of possible BF combinations to use.
- 6) Dozens of control parameters

Nested fit iterations for outlier rejection and gain of each instrument band. Typical model has 20:40 Basis Functions. [ROLO=GIRO has 328] Mean absolute residual ~0.7%

Calibrate all instruments in inventory, and some fabricated models.

| 21        | Aug04T1738=a4        | 5 a58=21/   | Aug04T1803             | LibMod=21J          | ul09T1512   | jit=16                                   |
|-----------|----------------------|-------------|------------------------|---------------------|-------------|------------------------------------------|
| Sli       | m?.inp ?_unc.        | bin8 heft?  | <pre>?.tab *_eg.</pre> | bin8 H wP=          | c 1 9 unity | 0 f                                      |
| RO        | LOG OLI HypM         | MODT MODA   | VIIRS VIIR             | N SeaW PleA         | PleB NIST   |                                          |
|           | MARwei 0             | .0063359    |                        |                     | Magnitude   |                                          |
| i         | name                 | symbol      | value*E3               | uncert*E3           | val*StD*E3  |                                          |
| 0         | const                | 1           | 131.711                | 0.37623             | 0.000       | This is the                              |
| 1         | const.1              | lw          | 53.995                 | 3.27755             | 30.837      |                                          |
| 2         | const.2              | 1w^2        | -28.603                | 2.70299             | 49.635      |                                          |
| 3         | phase:               | р           | -982.137               | 5.6/299             | 418.835     | Rase model:                              |
| 4         | pnase:2              | p^2         | 80.043                 | 3.81209             | 51./30      | Buse model.                              |
| D<br>C    | pnase: 3             | p 3         | -100.000               | 4.10010             | 124.189     | (for this tall)                          |
| 0         | phase:.1             | pw<br>nu^22 | -2/3.043               | 20./450/            | 200.402     | (101  true taik)                         |
| 0         |                      | pw ∠        | L9.300                 | 9.02237<br>11 /0002 | 52.041      |                                          |
| 0         |                      | p 2w        | -5 933                 | 20220255            | 17 972      | 21Aug()411/38                            |
| 10        | 1/g·2                | q^2         | 0 546                  | 4 96367             | 17 271      |                                          |
| 11        | 1/a: 1               | aw<br>aw    | 12 042                 | 2 87932             | 65 538      | or Um02f62                               |
| 12        | 1/g:.2               | aw^2        | -1.842                 | 2.38153             | 21.572      |                                          |
| 13        | 1/a:2.1              | a^2w        | -0.209                 | 4.39311             | 11.306      |                                          |
| 14        | Hb:                  | h h         | 48,919                 | 2.35988             | 38.133      | 34 coefficients,                         |
| 15        | Hb:3                 | h^3         | 10.080                 | 1.99306             | 10.124      | 18 are nure geometric                    |
| 16        | Hb:5                 | h^5         | -3.894                 | 9.66328             | 6.588       |                                          |
| 17        | Hb:.1                | hw          | 2.836                  | 15.14767            | 3.437       | To involve wave                          |
| 18        | Hb:.2                | hw^2        | -2.665                 | 15.24759            | 6.097       | With MapLib                              |
| <b>19</b> | Hb:3.1               | h^3w        | -0.078                 | 2.89292             | 0.122       | No Solar variation                       |
| 20        | Hlat                 | Z           | -1.891                 | 1.16756             | 2.059       |                                          |
| 21        | Hlat.1               | ZW          | 0.179                  | 0.48487             | 0.311       | MAR= 63 pptt = $0.63\%$                  |
| 22        | LibraX               | X           | -0.951                 | 0.23997             | 4.203       |                                          |
| 23        | LibraY               | У           | 0.216                  | 0.12172             | 1.043       | Columno 2 and 4                          |
| 24        | LibraX:2             | x^2         | -0.018                 | 0.19995             | 0.304       | Columnis 5 and 4,                        |
| 25        | LibraY:2             | y^2         | -0.005                 | 0.36218             | 0.090       | Symbol and value,                        |
| 26        | LibraX.1             | XW          | 0.018                  | 0.0/406             | 0.126       | Are a complete specification             |
| 2/        | Libray.l             | yw<br>(hw)  | -0.044                 | 0.06209             | 0.342       |                                          |
| 20        | HD <sup>+</sup> L1DX | (nx)        | -0.008                 | 0.13353             | 2.004       | of the SLIMED model !                    |
| 29        |                      | (Hy)        | -0.225                 | 0.02011             | 0.0//       |                                          |
| שכ<br>כו  |                      | (IIX) 2     | 0.000                  | 0.12914             | 0.142       | Magnitude == importance:                 |
| 32        |                      | (hy) 2      | 0.005                  | 0.03765             | 0.007       | Absolute magnitude of the coefficient    |
| 32        |                      | (hy)w       | 0.150                  | 0 01636             | 0.057       | Absolute magnitude of the coefficient    |
|           |                      |             | 0.135                  |                     | 0.575       | times the                                |
|           | Uncert'              | E3 is for   | mal SVD                | uncertaint          | У           | standard deviation of the basis function |

### A SLIMED model: 34 terms, no MapLib

slimel@288 20Sep13T1458



A 22-term model using MapLib correction is indistinguishable

# Different Hefts => Weights: %

|       |                | Heft_   |         | resi  | _weight_% |        |    |
|-------|----------------|---------|---------|-------|-----------|--------|----|
|       | <b>05T0544</b> | 05T0547 | 04T1803 |       |           |        |    |
| Inst  | 7              | 8       | 9=base  | 7     | 8         | 9=base | ~  |
| ROLOG | 0.066          | 0.033   | 0.023   | 39.53 | 26.38     | 19.67  | 20 |
| OLI   | 0.312          | 0.500   | 0.437   | 5.95  | 12.70     | 11.86  | 12 |
| НурМ  | 30.000         | 5.000   | 13.900  | 2.99  | 0.66      | 1.97   | 2  |
| MODA  | 0.546          | 1.000   | 0.628   | 8.50  | 20.76     | 13.94  | 14 |
| MODT  | 0.388          | 1.000   | 0.459   | 4.21  | 14.56     | 7.16   | 7  |
| VIIRS | 7.800          | 1.000   | 5.400   | 5.99  | 1.02      | 5.90   | 6  |
| VIIRN | 19.400         | 2.000   | 23.000  | 5.96  | 0.82      | 10.06  | 10 |
| SeaW  | 1.700          | 2.000   | 1.900   | 6.12  | 9.60      | 9.74   | 10 |
| PleA  | 13.800         | 2.000   | 4.800   | 5.95  | 1.15      | 2.95   | 3  |
| PleB  | 6.000          | 2.000   | 4.900   | 5.95  | 2.64      | 6.91   | 7  |
| NIST  | 1.700          | 2.000   | 1.600   | 2.92  | 4.58      | 3.91   | 4  |
| AerN  | 7.700          | 5.000   | 5.400   | 5.93  | 5.13      | 5.93   | 6  |

Only VIRRS (Suomi) is trend-corrected 7: ROLO 40%, Hyperion & NIST 3%, rest ~6% 8: ROLO 26%, other instruments more uniform 9: ROLO 20%, less MODIS, more both VIIRS and PLEIADES

### Comparison of coefficients for 7 models



All H9 (left 3,right 2) have same heft. H7 and H8 have same BF as base

### % change in flux for 7 models, GSICS grid and bands



All but 1 ----- 1 have 34 coefficients

### % change in flux for 7 models, GSICS grid and bands



All but 1 ----- 1 have 34 coefficients

#### 7 model calibration results for all instruments and models on GSICS geometry grid



ROLOH is version 3 data with new reference solar model

# **OLI trends**

Amplitude: 6=SW1, 1610 nm Lunar=ROLO: ~1% SLIM Hbase: ~ 0.2%

7=SW2, 2200 nm Lunar=ROLO: 0.4% SLIM Hbase: similar, period less clear

**Only Aerosol shows decline** 

L8 OLI SWIR1 and SWIR2 Lunder Content of Con





### Empirical Gains: LEO, surface, and models on GSICS



SLIMED is Base + Solar Variation MAR=0.633%. "Reality plot"

# Aspects of SLIM calibration

Some major disagreements. VIIRS very different than MODIS, but the same folks.?

Cluster below 880 nm of MODIS & PLEIADES & NIST Relative to these, SeaWiFS about -5%, GIRO≡ROLO model about -10%

Using MapLib or SLIM ~12 libration basis functions yield similar models

SeaWiFS about 5 % below others. Below 850 nm general agreement except for VIIRS. Some MODIS bands long of 1µ are inconsistent

GEO calibrations are [much] more noisy than LEO.

Possible causes of large Lunar calibration differences
Hardware techniques: Changes between nadir look and lunar look
Change in optics from a Z-axis observation
Response changes, thermal load effect.
Processing techniques: Extracting the lunar irradiance from an lunar observation
Myriad of possibilities, all addressable!
Misunderstandings and blunders



# SLIMED fit Double iteration loops



### Some conclusions

**Believe that SLIM model is closer to true moon than ROLO** Absolute scale still uncertain, but differences between instruments are solid.

LEO's mostly within a few %, outliers may be due to maneuver or team procedures. Fit trends; look for periodic behavior, sensitivity ~0.01%

Substantial problems exist in lunar calibration for a few instruments. Instrument calibration must be better than indicated by lunar calibration.

: Irradiance extraction techniques need work.

**Current irradiance is suspect, hence trending is suspect.** 

Serious need for high-accuracy lunar irradiance measurements at any phase: Spectral resolution ≤ 1/15 Eagerly await upcoming higher accuracy observations

Teams should re-examine the image-to-irradiance methodology. E.g., What is limiting GEO consistency?

### **Onward: External help and internal hints**

By looking at calibration results for several models for many instruments versus phase or other angles, can get a sense of any unreality in the models and what direction to pursue. (there are hundreds of figures)

Tuning the judgment areas is expected to get closer to the true Moon. Higher power wave terms; inclusion of opposition effect terms. Perhaps using rational functions.

### This talk has been a solution for method, the model is transitory.

Paper in progress. Plan to seek consensus on a specific model. Start with base model shown here.

Needs: Better lunar reference spectrum Uncertainty values from the instrument teams Some good candidate instruments exist for inclusion.



#### Backup slides follow

# Estimated sources of error

|                         |                           |                       | in ppm    |                        |  |
|-------------------------|---------------------------|-----------------------|-----------|------------------------|--|
| Item                    | expression                | Native                | Typical   | Best                   |  |
| Nadir vrs Moon          | attitude, hardware        | -                     | ? 10,000  |                        |  |
| Oversampling            | $\propto$ calib.          | Y size                | †7 ? 1000 | 100                    |  |
| Image artifacts         | ghosts, flare             | 1% ?                  | ? 10,000  | ? 1000                 |  |
| Solar variability       | most in UV                | 1/                    | 1000      | 300                    |  |
| Scan uniformity †3      | $\epsilon \cdot \nabla I$ | 1/100 ?               | †4 1000   | ?                      |  |
| Cross-track pixel scale | $\Delta \alpha / \alpha$  | -                     | OLI 5800  | ? 10                   |  |
| Frame image distortion  | $\propto 	heta^3$         | ?                     | ? 10      | ? 10                   |  |
| Image time              | -                         | $1~{\rm sec}$ =7.6 km | 20        | $\dagger 6$ ? $\sim 1$ |  |
| Moon not a sphere       | $\Delta h/R$              | 1/1737 local          | †1        | †2 0.2                 |  |
| Lunar surface           | Global reflectance        | 0.01  ppm/yr          | $\ll 1$   | $\ll 1$                |  |
| Spacecraft ephemeris    | U, one axis               | 1 KM ?                | 2.6       | $\ll 1$                |  |
| Lunar ephemeris         | ME distance               | $10~{\rm cm}$         | 2.6e-5    | $\ll 1$                |  |
| Relativity: $c$         | d/c                       | $1.3  \sec$           | 0.4       | $\ll 1$                |  |
| " Abberation            | v/c                       | 2.e-8 radian          | 0.003     | $\ll 1$                |  |
| Model: Absolute         |                           | 5% ?                  | 50,000    | ? 1000                 |  |
| Model: Relative         |                           | 1% ?                  | 10,000    | ? 100                  |  |

# **Error Table: Notes**

- 1: Accounted for in libration terms in model, if adequately high resolution in angle.
- 2: Non-linearity in  $1/\cos\theta$  over 7°[1.2e-3]; times the fractional circumference, Arbitrarily set a  $1/4 \ \Delta h/R$
- 3: Fractional rate change while crossing the Moon.
  - e.g., Change in mean scan rate over first 1/2 Moon to second 1/2
- 4: Depends upon scan direction. Typical fractional radiance difference between two halves of a lunar image may be 0.1
- 5: Change in mean scan rate over first 1/2 Moon to second 1/2
- 6: If scan direction and angle across Moon are consistent
- 7: May vary widely between instruments.

#### Al 2021Aug GSICS

Co