

PROBA-V Vicarious Calibration:

Investigation into the impact of in-orbit temperature variation

LIME (Lunar Irradiance Model ESA) model

Sindy Sterckx, Stefan Adriaensen (VITO)

LIME Model

LIME = Lunar Irradiance Model of ESA

NPL (UK), UVa (ES) and VITO(BE)

Developed under ESA contract from 2017-2019

- CIMEL instrument at 6 different wavelengths at 440,500,675,870,1020,1640 [nm]
- The LIME model is derived from +/-300 (automated) irradiance measurements of the moon at Pico Teide (Tenerife)
- The model simulates the exo-atmospheric total irradiance to be observed by any sensor within the 400nm 2500nm wavelength range
- Input to the model:
 - Timestamp, location -> observations between 2 and 90 degrees are accepted (both sides)
 - Sensor spectral response
- The approach to derive the model is highly similar to the USGS ROLO model (Kieffer and Stone, 2005): the C parameter set was made band specific.
- The model is capable of providing the Degree of Linear Polarization (DoLP) as an output.
- The uncertainty at reflectance level is max 2%

LIME Model: consortium

- NPL: calibration of the instrument and uncertainty (both measurement and model)
- UVa: instrument automated operation @Tenerife (incl. database) and performing Langley estimations
- > VITO: model derivation and uncertainties

Lunar Irradiance Measurements CIMEL 440nm (@Tenerife)

LIME Model: uncertainty

➤ The uncertainty at model wavelengths is derived using Monte Carlo analysis : every input measurement to the model has been perturbated 1000 times

Input irrad perturbated 1000x based upon meas. uncertainty

Results: 1000 models

Uncertainty is established at 2% (2 sigma)

LIME Model: comparison

- Comparisons with sensors and other models :
 - PROBA-V : large time series, fixed phase angle (+/-7°)
 - Pleiades-B: small dataset, full phase angle coverage
 - GIRO (model) : detailed time-series

Project reports on a dedicated cal-val portral CEOS

http://calvalportal.ceos.org/lime

Sentinel-3B: limited comparison

Published: Nemenan M. et al, "Use of Moon Observations for Characterization of Sentinel-3B Ocean and Land Color Instrument", 2020

- Ongoing :
 - ➤ AIR-LUSI data comparison to LIME : possibility to look at spectral performance of the model.
- In general agreements are quite good between sensor and model. More comparisons are needed to reveal model weak points (like phase dependency)

LIME Model: future

- > The model development is ongoing ('maintenance')
 - Extra measurements for geometry
 - > 'improvements' to the model are planned: non-linear part of the model, solar irradiance, ...
- > The uncertainties defined do not cover the complete model process
 - Lunar reflectance spectrum interpolation
 - Application of spectral response function
- Possible phase angle dependency needs to be addressed
 - PROVA-V experimental phase supports this action
- More in depth comparison between LIME AIR-LUSI is ongoing: evaluation spectral performance,...

LIME Model: conclusion

- ➤ ESA has succeeded to build a new Lunar irradiance model in about 2 years (2017-2019. Maintenance is assured for the next 4 years.
- > The model has been applied operationally to calibrate PROBA-V
- > Improvements to the model are planned in the next 2 years

