
Australian Calibration & Validation Activities Visible & Infrared Earth Observation: Status – Planned

GRWG/GDWG Web Meeting GSICS VIS/NIR sub-group Monthly Web Meeting September 2021, 7-9 AM (USA-EDT)

Prof. Stuart Phinn

E A Earth Observation Australia

CREATE CHANGE

Acknowledgement of Country

I would like to begin by acknowledging the Traditional Custodians of the lands and waters across Australia on which we work and meet today, and pay my respects to their Elders past and present.

I extend that respect to Aboriginal and Torres Strait Islander peoples here today.

I specifically acknowledge the traditional custodians of the Quandamooka, Turrbal and Yugara lands and waters, where I live, work and teach.

I offer my respect to their elders past, present and emerging as we work towards a just, equitable and reconciled Australia, and one where we recognise and build our shared knowledge and experiences.

Background - A Guidance Through Time by Quandamooka artists Casey Coolwell and Kyra Mancktelow for The University of Queensland Reconciliation Action Plan

Australian Calibration & Validation Activities Visible & Infrared Earth Observation: Status – Planned

Contributors:

Geosciences Australia

Bureau of Meteorology

CSIRO

Maitec

TERN

IMOS/Curtin Univ.

FrontierSi

- Medhavy Thankapan, David Hudson, Guy Byrne
- Agnes Lane, Helen Beggs, Alain Protat, Yi Huang
- Cindy Ong, Tim Malthus, Thomas Schroeder
- Stefan Maier
- David Antoine
 - -Jasmine Muir, Brendan McAtee

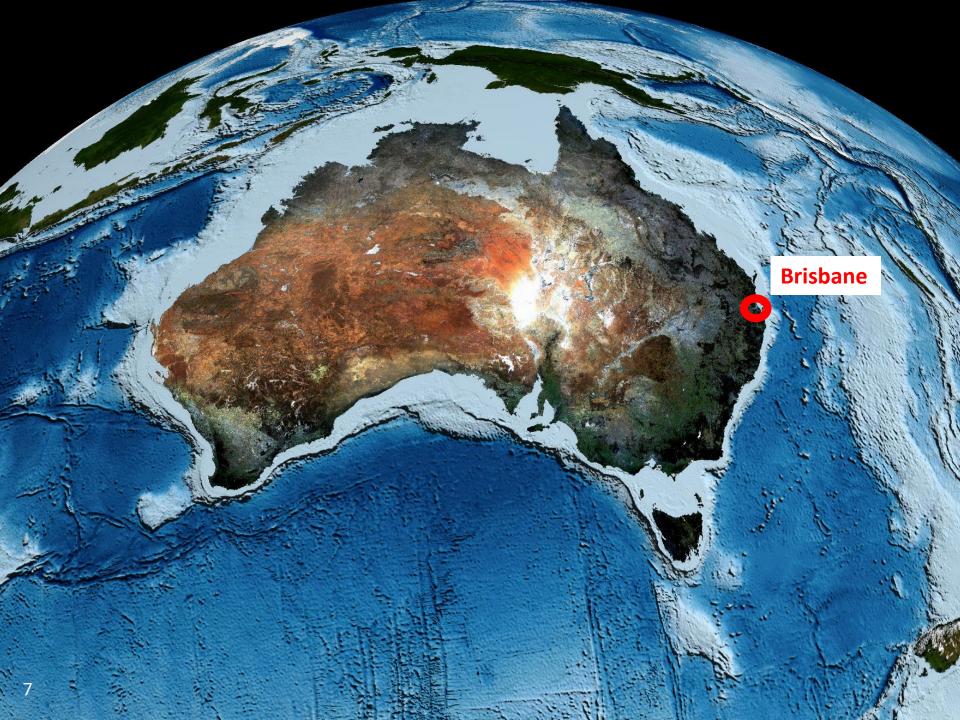
+ a large number of collaborators from all organisations!

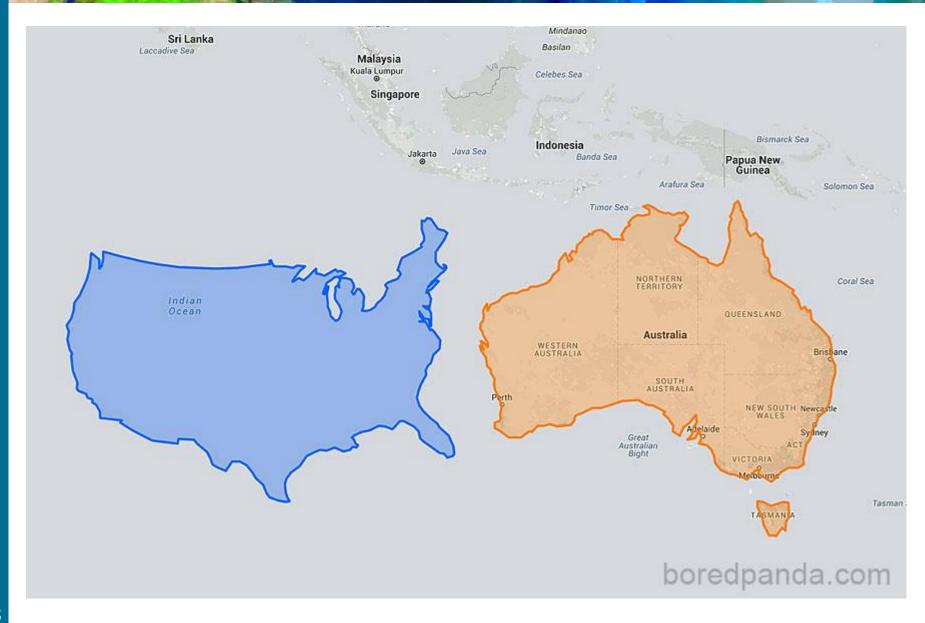
Contents :

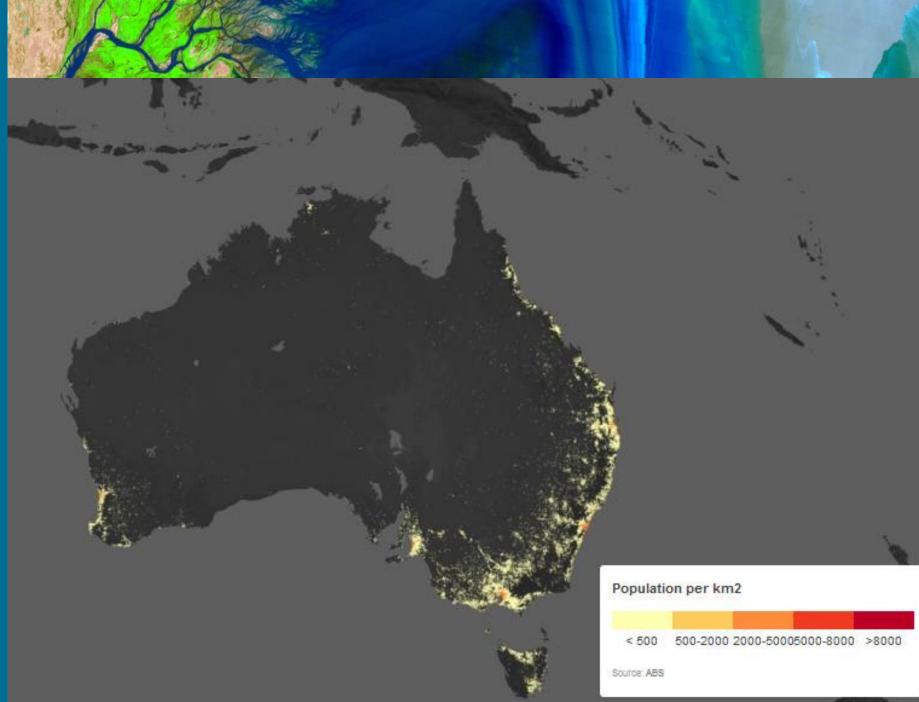
1. Aims

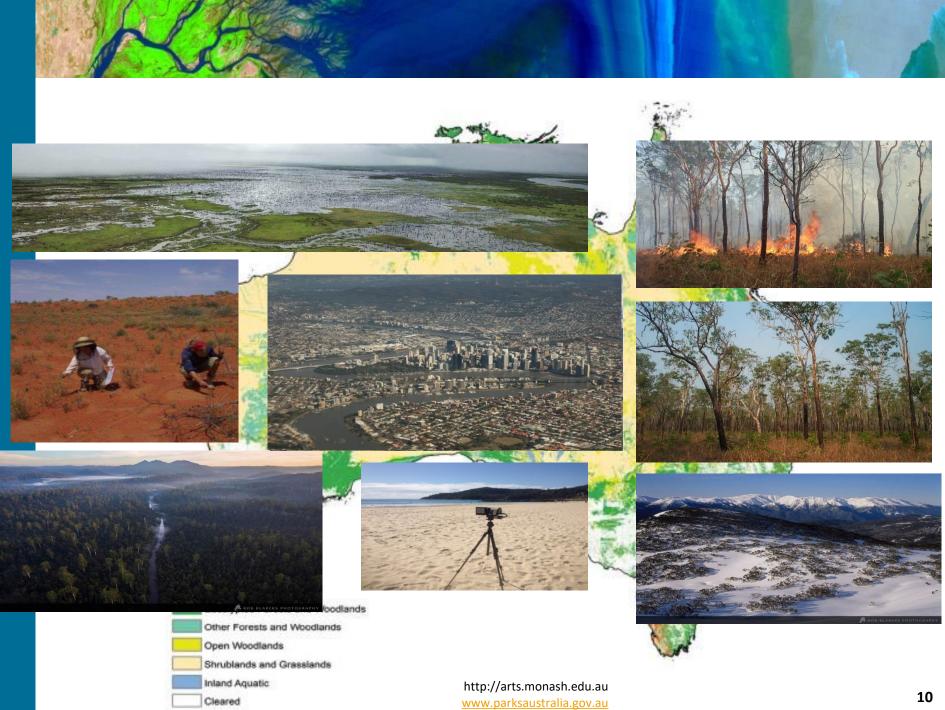
- 2. Australia and GSICS Mission and Roles
- 3. Australia Earth Observation and Space Agency?
- 4. Visible IR Calibration
- 5. Visible IR Validation
- 6. Potential ways forwards ?

Aims

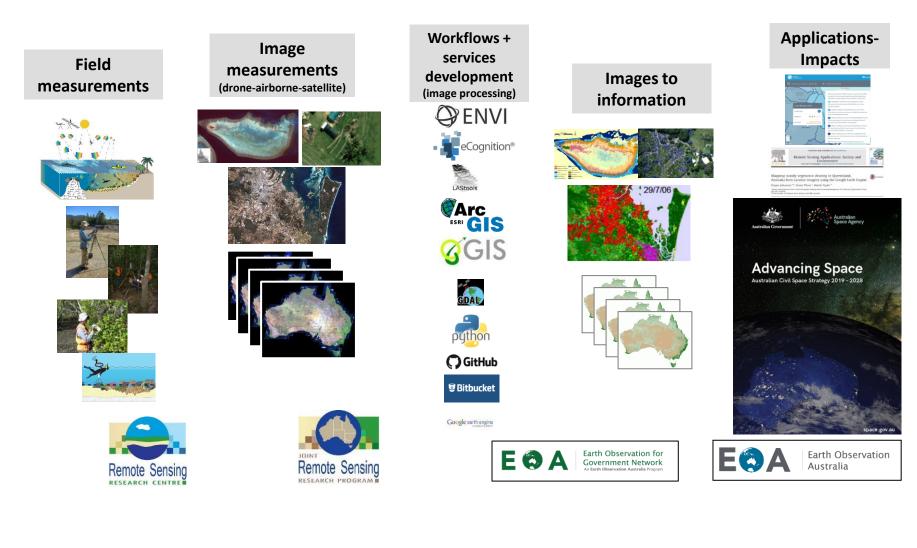

- To provide a high level outline of current and planned satellite earth observation calibration and validation activities, for visible to middle-infrared (350 – 2500 nm) conducted by the Australian Earth Observation Community, and supported by the Australian Space Agency
- Note Australian Earth Observation Community =
 - State/Territory and National Government Agencies
 - Defence Agencies
 - Private industry (start-up, small-medium enterprise, multi-national:
 - Universities
 - Others....


Contents :

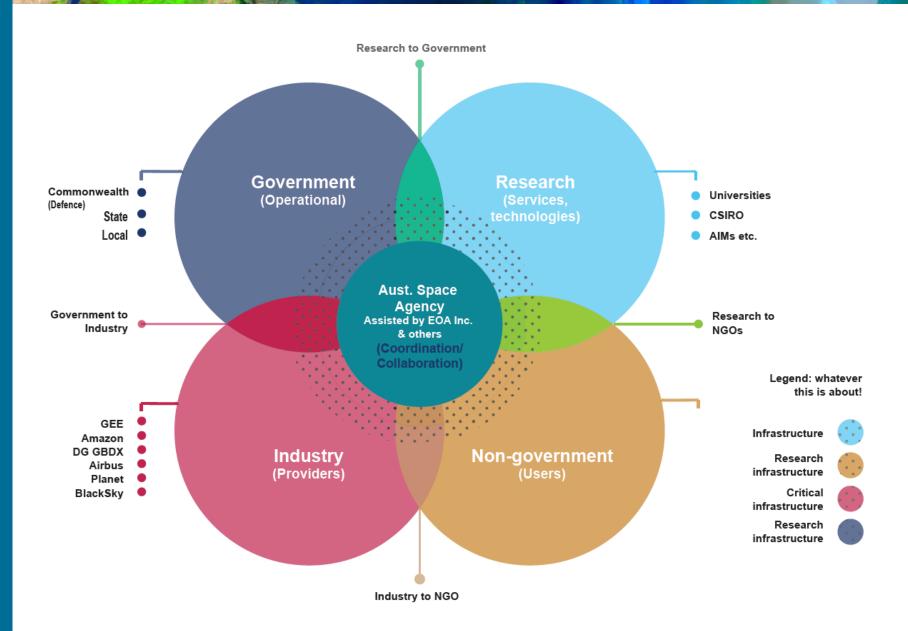

1. Aims


2. Australia and GSICS Mission and Roles

- 3. Australia Earth Observation and Space Agency?
- 4. Visible IR Calibration
- 5. Visible IR Validation
- 6. Potential ways forwards ?



• My biased view of "Earth Observation" Research



Contents :

- 1. Aims
- 2. Australia and GSICS Mission and Roles

3. Australia Earth Observation and Space Agency ?

- 4. Visible IR Calibration
- 5. Visible IR Validation
- 6. Potential ways forwards ?

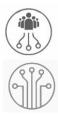
Earth Observation

www.eoa.org.au

Outcomes: 2017-2021

Implementation from – 2017:

- EO included in Research Infrastructure
- **Digital Earth Australia** •
- EO as part of Aust. Space Agency
- EO as part of QLD Space Strategy
- Formal national EO coordination
- Earth Observation for Government Network
- Advancing EO Forum 2021/22

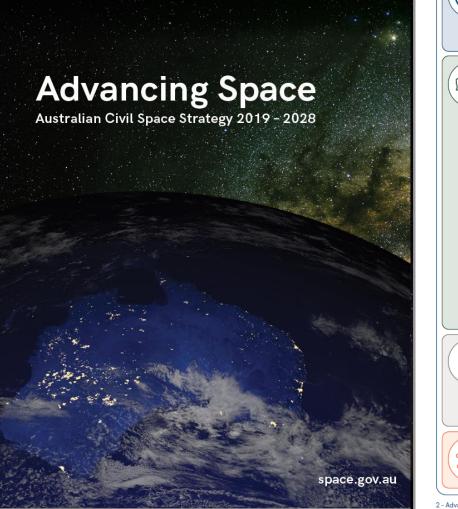

- 600+ members
- All national + state agencies
- 4 Industry Rep. Groups

Australian Earth Observation

Community Plan 2026

16

Continued National Coordination Priorities + Actions


Advancing Earth Observation Forum Revised 2021 and 2022 Events Advancing Space

www.earthobsforum.org

AUSTRALIAN CIVIL SPACE STRATEGY 2019-2028: IMPLEMENTATION	1 SET CONDITIONS 2018-2019	2 ENGAGE WITH OPPORTUNITY 2019-2020	3 DELIVER SUCCESS 2021-2028
INTERNATIONAL Open doors	CNES, UK, Canada, UAE	NASA, ESA, DLR, JAXA, NZ, Indo Pacific region	Joint international missions
	Partnerships for a globally competitive space sector		
		Multilateral presence	
NATIONAL			Access to space
Increase capability			Robotics and automation
			Leapfrog R&D
			Space situational awareness and debris monitoring
		Communication techno	logies and services
	Earth observation		
	Position, navigation and tir	! ming	
	State and to	erritory engagement and industry p	vartnerships
		Export ready space industry	
		Coordinated civil space activities	
		Space Infrast	ructure Fund
RESPONSIBLE Regulation, risk, and culture	Reform Space Activities Act 1998	Implement risk management framework for space activities managements for the Space Launches and Returnal Act 2018 Consider regulatory support for future space activities including Access to space	Develop regulatory support for future space activities for example human space flight
	UN Conventions, b	ilateral and multilateral obligations	, UN Strategy 2030
INSPIRE Build future workforce	Engage the nation Amplify communication on space activities through leveraging partnerships across the nation	Identify and implement partnerships to build the future workforce, for example through STEM initiatives, internships Identify workforce skills and training requirements	Moonshot missions Space sector training priorities Build on partnerships to support the future workforce

Contents :

- 1. Aims
- 2. Australia and GSICS Mission and Roles
- 3. Australia Earth Observation and Space Agency?

4. Visible – IR Calibration

- 5. Visible IR Validation
- 6. Potential ways forwards ?

Calibration activities ?

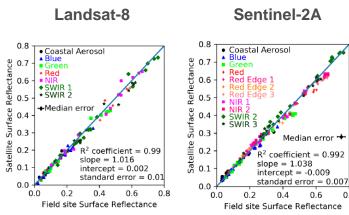
- Pre-launch?
- Post-launch?
- No information provided

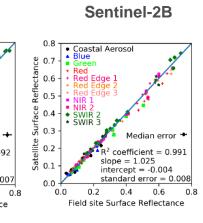
Contents :

- 1. Aims
- 2. Australia and GSICS Mission and Roles
- 3. Australia Earth Observation and Space Agency?
- 4. Visible IR Calibration
- 5. Visible IR Validation
- 6. Potential ways forwards ?

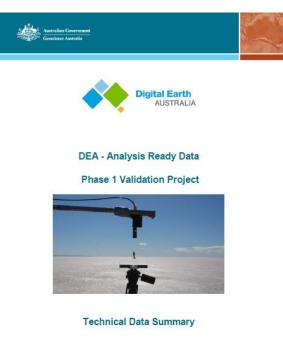
Geoscience Australia Agency Report

Medhavy Thankappan

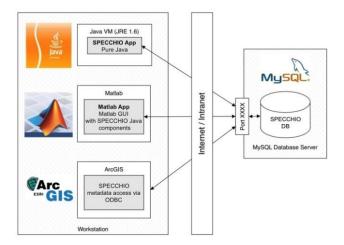

medhavy.thankappan@ga.gov.au


Continental Surface Reflectance Validation Phase 1 - Status

Data Collection



SR Validation - Phase 1 Wrap up

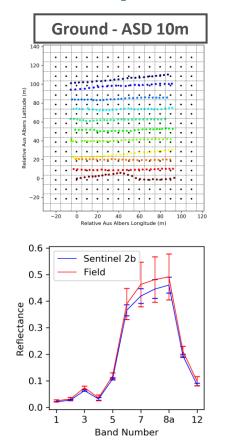

Australian bushfires and COVID impacted on field data acquisitions

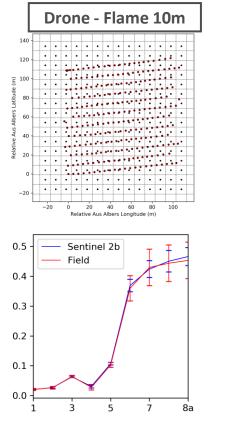
Publish Phase 1 technical data summary report

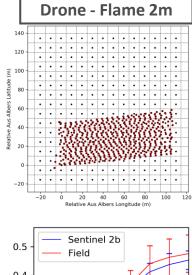
Establish National Spectral Database and publish field spectral data

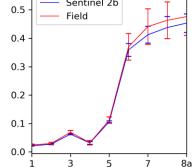
Guy Byrne, Andrew Walsh, Medhavy Thankappan, Mark Broomhall and Eric Hay

Validation with Flame Spectrometer mounted on Drone


Local drone based spectrometer trials were done


Example shown for synchronous data takes with Sentinel 2B


ASD + Flame spectrometers used in tandem


Results for data takes at 10m and 2m spacing

Drone based BRDF characterisation is also being planned

North Australian Satellite Validation Facility (NASVF)

located in the monsoonal north of Australia approx. 80km south of Darwin

operational:

•canopy/understorey Leaf Area Index (LAI) + Cover (automated + regular campaigns)

•soil moisture/temperature sensor network

top-of-canopy radiance/reflectance (regular campaigns)

in development:

Fraction Absorbed Photosynthetic Active Radiation (fAPAR) sensor network
sky camera
atmospheric particulate matter (PM1, PM2.5, PM4, PM10)
total column atmospheric water vapour
aerosol optical thickness

ancillary:

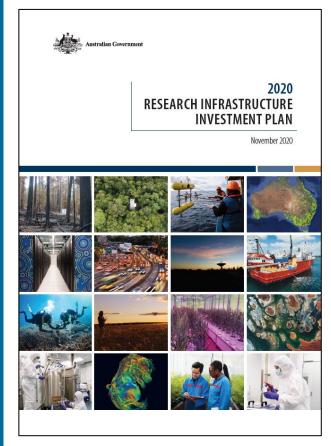
rainfall

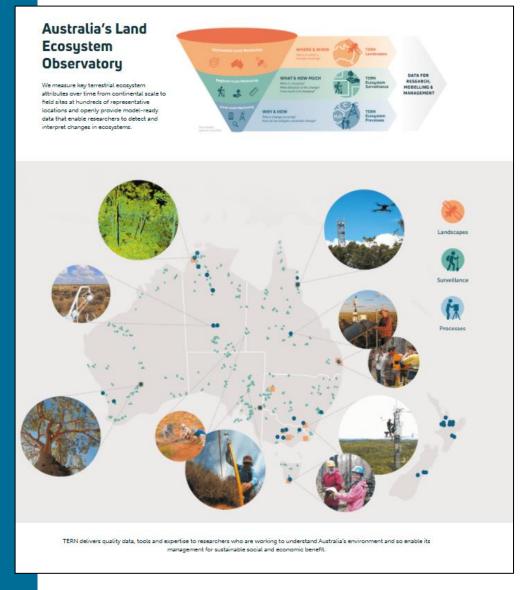
•temperature

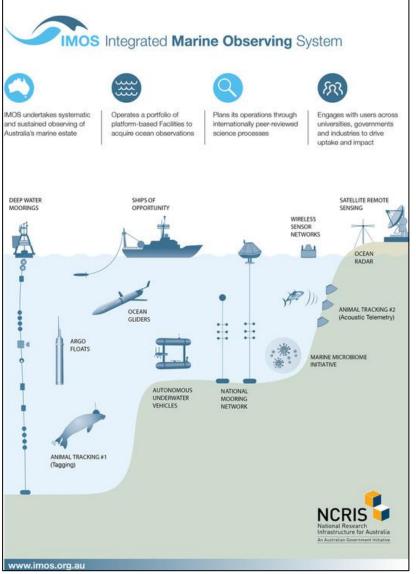
•humidity

Contact:

Dr Stefan W Maier <u>stefan.maier@maitec.com.au</u> https://www.ozcalval.org

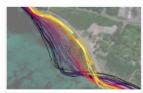



National Collaborative Research Infrastructure



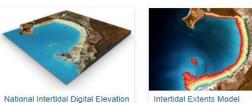
https://2021nriroadmap.dese.gov.au/

National Collaborative Research Infrastructure



¥ f ⊠ in

News & Resources Contact Us About Products ~ Projects Open Data Cube

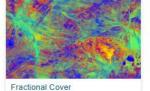


Model

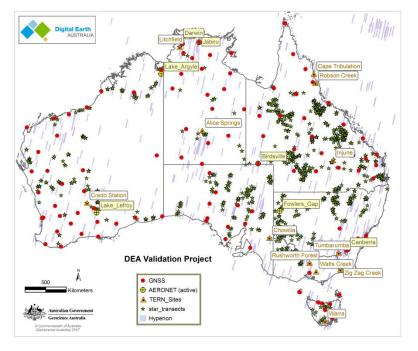
Digital Earth Australia Hotspots



Intertidal Extents Model



High and Low Tide Composites



Landsat Surface Reflectance

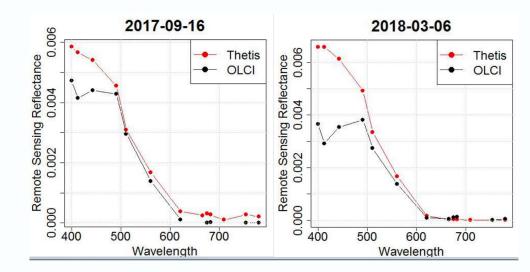
including; biophysical data, IBRA regions, state and national sampling sites, (active and historic), USGS test sites, data archives and portals, image archives (satellite and airborne) WRS and DEA tile boundaries.

Current Australia's Ocean Colour Radiometry Cal/val activities David Antoine, Curtin University Thomas Schroeder, CSIRO O&A

csiro

Curtin University

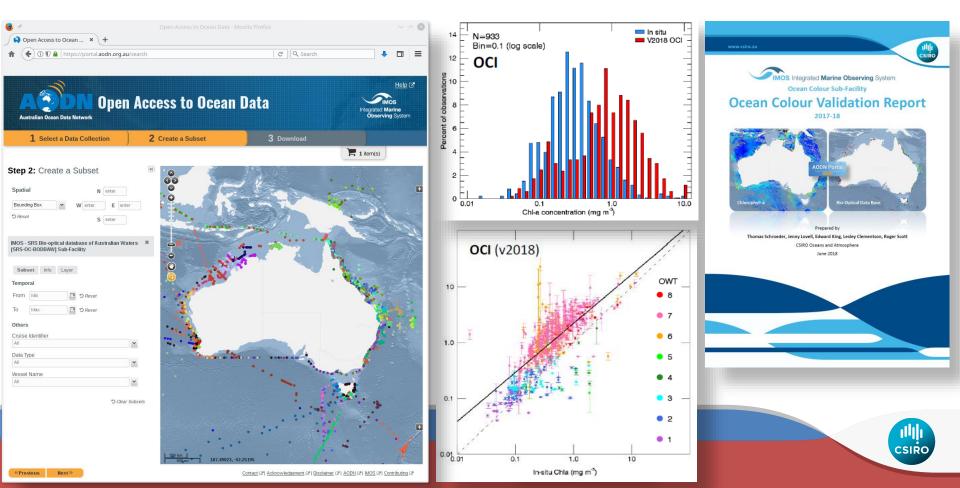
Composite image (March 2017) of the phytoplankton biomass around Australia, from observations of the ESA Sentinel3 "OLCI" sensor. RSSRG algorithms applied on 6 10⁸ pixels using Pawsey computing resources and the Australia "Copernicus data Hub"

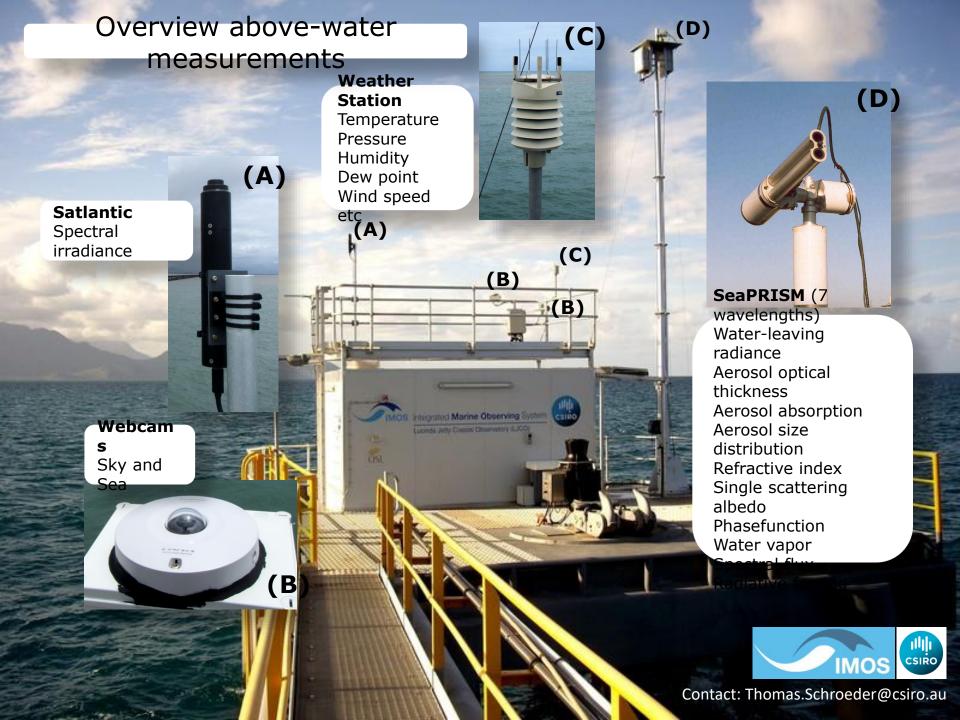

In-situ profiling mooring for ocean colour cal/val

System provides real-time data of optical properties, environmental parameters and phytoplankton characteristics via a 3G Telemetry system each time it completes a profile of the water column (60 m bottom depth).

Deployment of the WETLabs Thetis moored profiler near Rottnest Island, off the coast of Perth, Australia.

Match-ups between Thetis Satlantic OCR Radiometers and Sentinel3–OLCI instrument by Intern student Jorrit Scholze.


Australian Government Australian Research Council



IMOS Ocean Colour Validation

Contact: Thomas.Schroeder@csiro.au

Sub-facility generates daily Level-3 (gridded) ocean colour products from MODIS-Aqua and VIIRS Product validation using IMOS Bio-optical Database – freely available via AODN Match-up are separated into Optical Water Types (Moore et al. 2009) Annual validation reports

Overview in-water optical measurements

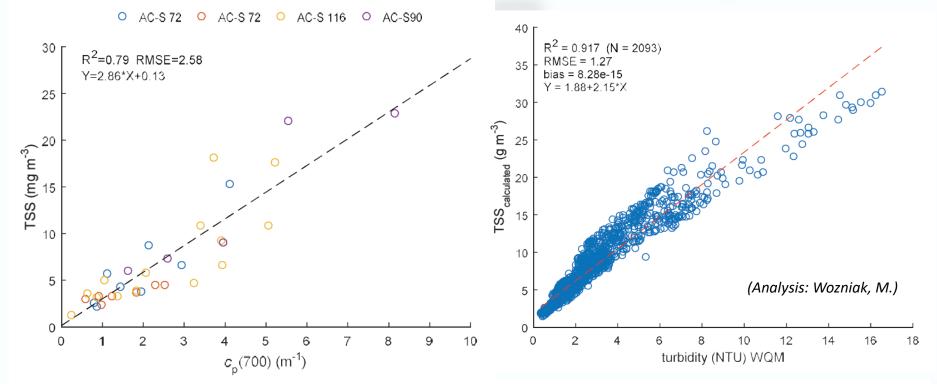
WetStar fluorometer CDOM absorption Chlorophyll-a Uranine Phycoeryhrin

ACs (80 wavelengths) Total absorption Total attenuation Automatic winch controller keeps cage at a constant depth

WQM Temperature Salinity Depth Dissolved oxygen Turbidity Back scattering Chlorophyll fluorescence

BB9 (9 wavelengths) Back-scattering

Contact: Thomas.Schroeder@csiro.au


DAPCS Network enabled real-time data logger

ACs switching unit (filtered/unfiltered)

Fortnightly servicing and water sampling optimized for satellite match-ups

Lucinda Jetty – bio-optical relationships

Proxies to derive continuous concentration time series

Relationship between attenuation (AC-s) and lab TSS used to calculate TSS from WQM

In addition regression of AC-s absorption at 678 nm vs HPLC chlorophyll.

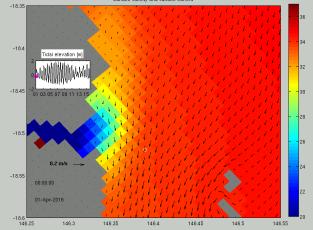
Relationships will be used to derive a **continuous time water quality series** of TSS and chlorophyll-a from in-water optical AC-s and WQM measurements.

LJCO is variable coastal site

 Tidal range 0.2-4 m

 Water temperature 22-31°C

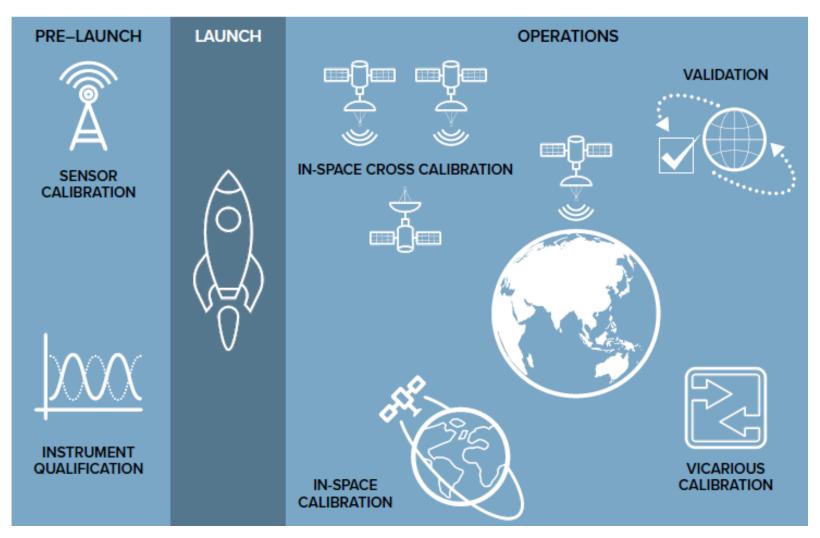
 Salinity 27-36.5


 TSS
 1.17-35.7 g m⁻³

 CDOM
 0.22-6.35 mg m⁻³

 Chl-a
 0.01-0.49 m⁻¹

Surface salinity and surface curren

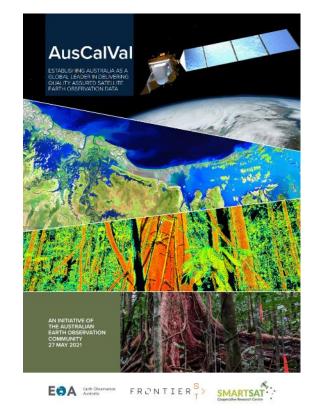

⁽Image credit M. Baird)

(Image credit D. Boadle)

Contents :

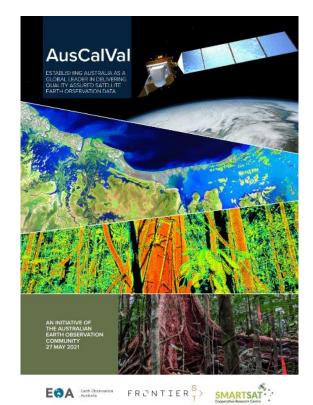
- 1. Aims
- 2. Australia and GSICS Mission and Roles
- 3. Australia Earth Observation and Space Agency?
- 4. Visible IR Calibration
- 5. Visible IR Validation
- 6. Potential ways forwards ?

QUALITY ASSURANCE FOR EARTH OBSERVATION SATELLITES



AusCalVal: Establishing Australia as a Global Leader in Delivering Quality Assured Satellite Earth Observation Data

This strategy has four components:


- 1. a coordination body to oversee operations, communication and access to data, facilities and expertise;
- 2. a comprehensive, operational and research network of calibration and validation facilities across Australia;
- 3. an open source suite of quality assurance tools leading to a data integrity monitoring service for all satellite operators; and,
- 4. an Australian owned and operated series of Satellite Cross-Calibration Radiometers to provide improved accuracy and consistency between optical satellites.

https://frontiersi.com.au/auscalval/

EXISTING AND PROPOSED CALIBRATION AND VALIDATION SITES

Туре	Existing site	New site
Radar sensors	Site 1: QLD Corner Reflector Array	Site 2: NT Alice Springs or Woomera corner reflector network
Optical sensors	Site 3: WA Pinnacles Medium Spatial Resolution Bright Optical Vicarious	Site 6: Optical Coarse Spatial Resolution Vicarious Calibration Site
	Calibration Site 4: WA Lake Lefroy Medium Resolution Bright Optical Vicarious Calibration Site	Site 7: CORIO: Cotter Reservoir Inland Observatory (optical dark target)
	Site 5: National Optical Calibration Laboratory Facility	
Geometric calibration		Site 8: NT Alice Springs geometric calibration facility
Above and in-water biophysical properties	Site 9: QLD Lucinda Jetty Coastal	Site 10: TAS Bruny Island Aquatic Target
	Observatory	Site 11: AquaWatch In-Situ Sensor Network
		Site 12: NT Darwin Harbour Aquatic Target
		Site 13: Rottnest Island blue water site
Atmospheric Composition	Site 14: AeroSpan Network (Internationally AERONET)	Site 16: Terrestrial Numerical Weather Prediction validation
	Site 15: Total Carbon Column Observing Network TCCON	
Terrestrial landscapes/ vegetation	Site 17: Terrestrial Ecosystem Research Network (TERN) SuperSites and associated sites	
	Site 18: Cosmic Probe (CosmOz) Network	
	Site 19: OzFlux Network	
	Site 20: Endorsement of Australian sites for the Global Forest Biomass Reference System	
Ocean	Site 21: IMOS	
	Site 22: SWOT (Bass Strait)	
	Site 23: Ocean Numerical Weather Prediction validation	
	Site 24: SWOT (GBR/SOFS/Albany)	
	Site 25: SWOT (Mawson)	

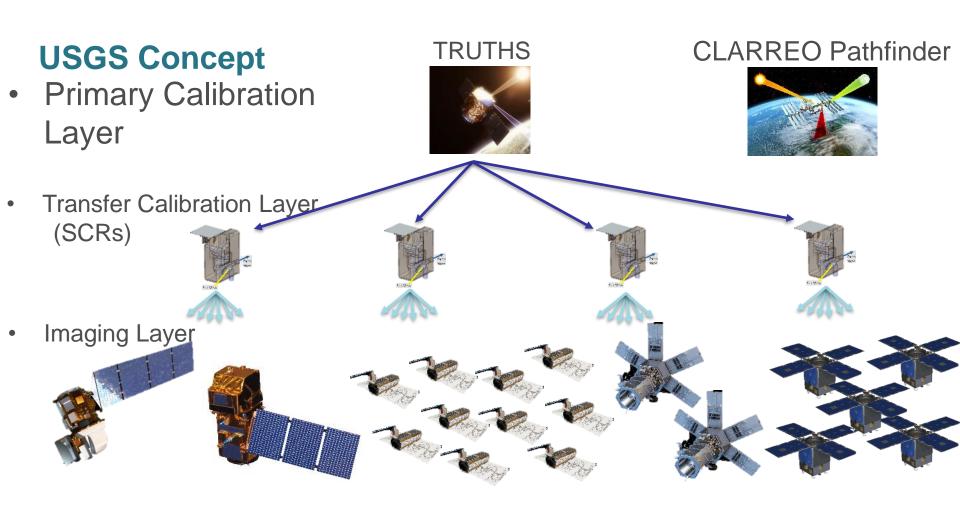
Satellite Cross-Calibration Radiometers (SCR)

Presentation to Surface Biology and Geology (SBG) Calibration and Validation Working Group (CVWG)

30 July 2021

Dr David Hudson

Australia's strategic objectives

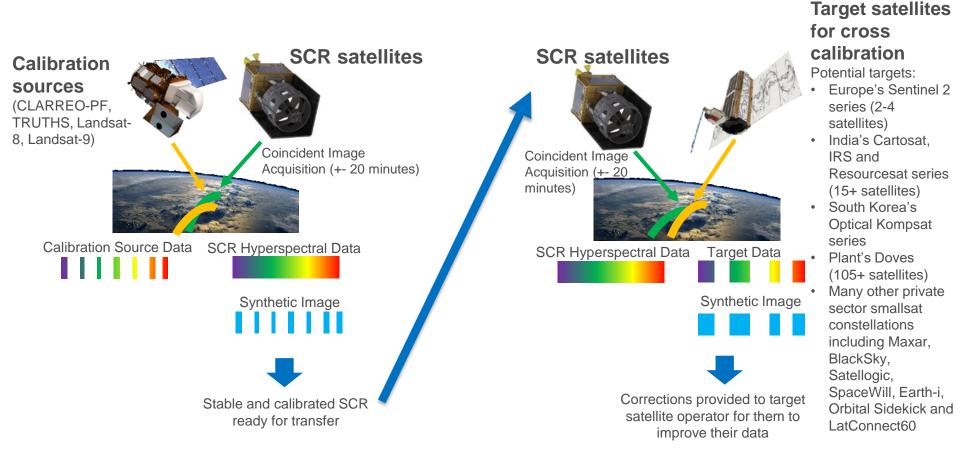


Securing our access to data

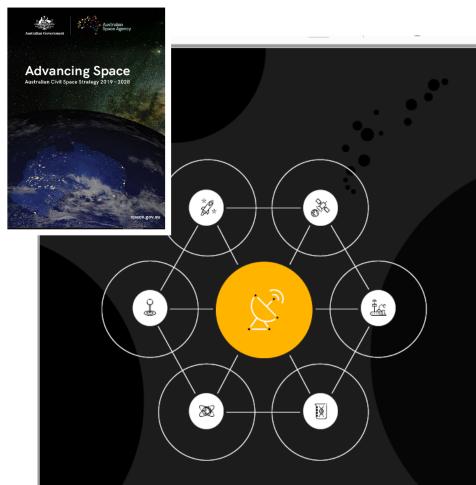
Uplifting our satellite manufacturing capability

Growing our app development industry

A feasibility study


- University of New South Wales's Australian
 National Concurrent Design Facility (ANCDF)
- From December 2020 to March 2021 a total of 40 experts from 13 organisations were consulted or participated in the study
- Finding:
 - Sure we could give that a crack
 - Be kinda hard though, we might need help

https://unsw.adfa.edu.au/ourresearch/facilities/ancdf



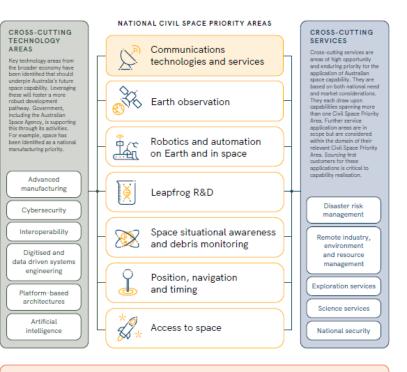
SCR Operations Concept Overview

Australia's (current) specifications for SCR

Requirement	Breakthrough	Target
Spatial resolution -GSD (m)	100	100
Swath (km)-nadir	40	60
Spectral range (nm)	400-2400	350-2400
Spectral sampling interval (nm)	10	5
Number of bands (max)	200	410
Spectral resolution (FWHM) - DI (nm)	15	7.5
Spectral calibration accuracy (nm)	0.1	0.1
Radiometric accuracy (%)		
Pre-flight	3	2
On-orbit	5	3
Radiometric stability (%) over 30 days	0.2	0.2
Signal-to-Noise Ratio	> 150:1	> 150:1
Dynamic range - ADC (bits)	12	12
Orbit		
Туре	Polar-SSO	Polar-SSO
Altitude (km)	550-705	550-705
Daily collection volume (GByte)* - uncompressed	117	360
Program risk classification (NASA)	Class D	Class C

Seven interconnected roadmaps

GEOSCIENCE AUSTRALIA


The Civil Space Priority Areas are interconnected, reliant on crosscutting technology areas, facilitated by non-technical enabling activities, and may be applied to many cross-cutting services. The roadmap for each Civil Space Priority Area details the significance of these factors to its implementation. The roadmaps nexus illustrates the strategic interplay of these important categories.

While the Australian Space Agency has an important role as a partner, facilitator and regulator, it is the initiative of the space sector that will drive the pursuit and capture of the identified opportunities.

0

ROADMAPS CONTEXT

Roadmaps nexus Identifying growth activities

FACILITATORS

Facilitators enable progress towards reaching the targeted capabilities. They provide the supporting conditions to contribute to addressing challenges identified by the Australian space sector and streamline the path to achieving the roadmap visions. Together, the implementation of these facilitators will foster environments conducive to impactful research and development (R&D), and to a dynamic and robust commercially-focused ecosystem favourable to new business ventures.

Australian Calibration & Validation Activities Visible & Infrared Earth Observation: Status – Planned

Prof. Stuart Phinn s.phinn@uq.edu.au www.eoa.org.au

E A Earth Observation Australia

