CHARACTERIZATION OF THE VIS/NIR CHANNELS OF SEVIRI WITH VENUS

MARTIN BURGDORF UNIVERSITÄT HAMBURG

INTRODUCTION: WHY USE PLANETS FOR CAL/VAL?

- Serendipitous obs. of well-known objects in flight during mission
- Geometric calibration: position well known, object < IFOV
- Checks ground characterization in flight
- Radiometric calibration: Venus covered by clouds, disk-integrated
- Check photometric stability, alternative to vicarious cal. / SNO
- How accurate are the observations of celestial objects?

10/14/2021

PLANETARY MAGNITUDES AS SEEN FROM EARTH

10/14/2021

3

SIMULTANEOUS OBSERVATIONS OF MERCURY & VENUS Venus with SEVIRI on MSG-3 at Mercury NIR

1.6 μm on 5/15, 2017

THE E-W POINT SPREAD FUNCTION OF SEVIRI ON MSG-3 AND THE FINITE IMPULSE RESPONSE

Point Spread Function in Flight

Simulation in Wooster et al. (2009)

SUMMARY – GEOMETRIC PERFORMANCE

Point Spread Function

Good agreement with expectation – easy to measure for all channels

CHECK GEOMETRIC PERFORMANCE FROM EXACT POS.

******	***************************************														
Date	(UT)	HR:MN		R.A	۱	(I(CRF)		DEC	APmag	S-brt	Ang-diam	1-way_down_LT	S-T-0	
******	***************************************														
\$\$SOE	\$\$SOE														
2017-Ma	ay-15	21:45	*m	00	40	33.49	+03	28	34.0	-4.615	1.479	30.19823	4.59606672	103.6037	
2017-Ma	ay-16	21:45	*m	00	43	37.63	+03	41	01.3	-4.604	1.479	29.77729	4.66103652	102.8027	
2017-Ma	ay-17	21:45	*m	00	46	44.44	+03	53	56.3	-4.592	1.479	29.36658	4.72622472	102.0150	
2017-Ma	ay-18	21:45	*m	00	49	53.80	+04	07	17.9	-4.581	1.478	28.96583	4.79161288	101.2400	
\$\$EOE	\$EOE														
+++++++	+++++	++++++	4 4 4 4	444	444	+++++	++++	444	++++++	+++++++++++	+++++++	+++++++++++	++++++++++++++++++++++++++++++++++++++	++++++++++	

GSICS VIS/NIR sub-group Monthly Web Meeting

10/14/2021

7

CONSECUTIVE OBSERVATIONS OF A PLANET

Movement in North-South direction agrees with obs.

Characterization of the VIS/NIR Channels of SEVIRI With Venus

Sampling is accurate within a fraction of a ‰ over one hour.

8

SUMMARY – GEOMETRIC PERFORMANCE

Point Spread Function

Good agreement with expectation – easy to measure for all channels

Relative accuracy within an image and between consecutive images

Rel. accuracy tested with Mercury and Venus standing 18.3° (> Ø of Earth) apart: sampling error 1.6 m (MSG-3), tilt <0.04°</p>

Confirmed with five consecutive observations of Mercury

UH H

10/14/2021

9

GSICS VIS/NIR sub-group Monthly Web Meeting

SOUTH/NORTH SEPARATION OF VNIR CHANNELS

Nain & Mueller, 2019

GSICS VIS/NIR sub-group Monthly Web Meeting

10/14/2021 10

CHANNEL CO-REGISTRATION WITH SEVIRI ON MSG-4 Venus at 6200 nm on 9/30, 2019 Venus at 800 nm on 9/30, 2019

GSICS VIS/NIR sub-group Monthly Web Meeting

10/14/2021 11

SUMMARY – GEOMETRIC PERFORMANCE

• Point Spread Function

- Good agreement with expectation easy to measure for all channels
- Relative accuracy within an image and between consecutive images
 - Rel. accuracy tested with Mercury and Venus standing 18.3° (> Ø of Earth) apart: sampling error
 - 1.6 m (MSG-3), tilt <0.04°
 - Confirmed with five consecutive observations of Mercury
- Mis-registration in different channels
 - Poor co-registration of focal planes, both in N-S (≈1 km) and E-W (≈10 km) direction

10/14/2021 12

GEOMETRIC AND RADIOMETRIC PERFORMANCE

- Point Spread Function
 - Good agreement with expectation easy to measure for all channels
- Relative accuracy within an image and between consecutive images
 - Rel. accuracy tested with Mercury and Venus standing 18.3° (> Ø of Earth) apart: sampling error
 1.6 m (MSG-3), tilt <0.04°
 - Confirmed with five consecutive observations of Mercury
- Mis-registration in different channels
 - Poor co-registration of focal planes, both in N-S and E-W direction
- Radiometric calibration
 - Measurement uncertainties in VIS/NIR similar to vicarious calibration (2% 5% single obs.)
 - In spite of mismatch between IFOV and sampling

10/14/2021 13

GSICS VIS/NIR sub-group Monthly Web Meeting

CONCLUSIONS

- Venus in the corners of the image is helpful for characterising the geometric performance of SEVIRI's VIS/NIR (and IR) channels in flight.
- Characterisation of radiometric stability possible for successive images how constant is albedo?
- For VIS/NIR imagers with small IFOV (ABI, AHI, AMI): star close to celestial equator, e g Procyon
- Manoeuvres unnecessary but access to raw data is needed.