

IASI-A End Of Life campaign during the deorbiting

Bertrand Théodore, Dorothée Coppens

EUM/RSP/VWG/22/1291348, v1 Draft, 14 March 2022

IASI End Of Life Activities

Purpose:

- Take advantage of the Metop-A de-orbiting manoeuvres to acquire Simultaneous Nadir Observations of IASI-A, B and C
- Allowed for the first time direct IASI inter-comparisons that was impossible in routine operations due to the time separation (50 minutes) of the spacecrafts

Inter-comparisons can be performed by:

- 1 to 1 comparisons of the closest acquisitions. However
 - Limited number of overlapping pixels
 - Limited number of uniform pixels
- Averages over the region where the orbits cross
 - Large (>1000) number of pixel
 - Implies that <IASI-A IASI-B/C> = <IASI-A> <IASI-B/C> is valid

- Five IASI-A/IASI-B and three IASI-A/IASI-C SNOs occurred between the 19th and the 25th November 2021 both both the Artic and the Antartic
- For the de-orbiting manoeuvre, the platform was biased in yaw. This means that:
- the Doppler effect was not compensated for anymore
- the co-registration IASI/AVHRR failed at the edges of the swath impact on the cloud fraction estimation

The case of the SNO IASI-A/IASI-B on 19th Nov. 09:11 UTC

The radiances of all pixels within the ROI are averaged depending on the scene temperature

Already very promising results!

All end-of-life analysis will be completed by the end of June 2022

The data were not disseminated. If you want to access the data, please send a request to: ops@eumetsat.int

Thank you for the attention!

IASI Non-linearity post-correction

Bertrand Théodore, Dorothée Coppens

+ C+

EUM/RSP/VWG/22/1291348, v1 Draft, 14 March 2022

Introduction

Rationale:

- The design of hyperspectral IR instruments implies different calibration and correction processes
- But some features are common to all instruments, such as:
 - The non-linearity of the detectors that depends on the type of the detector material
 - ✓ The etalon effect which can occur in the optical system in many hyperspectral IR instruments and be seen in their measurements

Developing corrections for both instrument effects would improve data quality and be beneficial to users

Status:

- For all hyperspectral instruments, the non-linearity correction is done in the on-board processing on raw interferograms
- ✓ The on-ground processing does not have access to the raw interferograms → this makes an exact correction impossible
- ✓ Reprocessing of the non-linearity correction is not possible

Open questions:

- ✓ Is it possible to remove *a posteriori* the residual non-linearity in the ground processing (i.e. when the information on the original signal has been lost)?
- If yes, it would then be possible to post-process or reprocess any L1 hyperspectral radiance products, including aspects related to non-linearity

Under a contract with EUMETSAT, SPASCIA has proposed a correction algorithm:

 $S_corr(v) = S(v) \cdot (1 - (2 \cdot \varepsilon(A2) \cdot (V_EW - V_BB)) - (3 \cdot \varepsilon(A3) \cdot ([V_EW]^2 - [V_BB]^2)))$

 $\varepsilon(A2)$ = Estimation error of the quadratic term of the non-linearity correction. $\varepsilon(A3)$ = Estimation error of the cubic term of the non-linearity correction. V_{EW} = Earth view interferograms base line. V_{BB} = Black body interferograms base line.

It means:

✓ The correction is post-processing, using calibrated spectra
✓ The correction requires the knowledge of the interferogram baseline
✓ The BB temperature is needed to compute the BB spectrum

Non-linearity correction – validation using IASI

IASI-A: Average error per class:

Before correction

After correction

Non-linearity correction – validation using IASI

Residual Errors can be interpreted as a bias
Each spectrum is bias corrected with respect to its atmospheric class

15 EUM/RSP/VWG/22/1291348, v1 Draft, 14 March 2022

EUMETSAT

Checking the consistency IASI-A/IASI-B using IASI spectra averages:

Conclusion

The post-correction + the bias removal works almost perfectly and allows a time-consistent dataset over the whole instrument lifetime

✓ This method is being tested to see if this can be used in the reprocessing of IASI L1c on both Metop-A and Metop-B

✓ If all good, the IASI L1c reprocessed products will be made available by the end of 2022/beginning 2023.