

Performance of FY-3D&E/MERSI for IR Channels

Hanlie XU, Xiuqing HU National Satellite Meteorological Center(NSMC), CMA Songtao LEI, Yang WANG Shanghai Institude of Technical Physics(SITP), CAS

May 5, 2022

FY-3E/MERSI-LL Intruduction and Onorbit Performance

FY-3E/MERSI-LL IR Radiometric Calibration and validation

02

Long-term stability of FY-D&E/MERSI IR channels

Summary and discussion

FY-3E/MERSI-LL Instrument Introduction

Description

- **Purpose**: Global observations of earth on terminator with high temporal resolution
- Predecessor Instruments: FY-3D/MERSI-II
- **Bands**: six infrared channels following FY-3D, one panchromatic low-light channel with a spectral range of 500-900 nm and one shortwave infrared experiments channel
- Spatial resolution: 1000m, 250m(10.8 and 12 um)
- Swath Width: ~2500km
- EV scan angle range: -54.665° ~+50.03°

No.	center wavel ength (mm)	L _{max} /T _{max} W/ m ² /sr	L _{min} /T _{min} W/ m ² /sr	L _{typ} /T _{typ} W/m ² / sr	SNR/ NEΔT @L _{typ} /T _{typ}	calibration accuracy (%/T)
1	0.70	90	3e-5	4e-5(night)	7	50%
				50 (day)	200	10%
2	3.8	350K	186K	300K	0.25K	0.4K
3	4.05	380K	185K	300/380K	0.25K	0.4K
4	7.2	270K	186K	270K	0.30K	0.4K
5	8.55	330K	185K	270K	0.25K	0.4K
6	10.8	345K	185K	300K	0.30K	0.4K
7	12.0	345K	185K	300K	0.30K	0.4K

Status

- Jul. 2021
- ✓ Low-light band activity (July 9, 2021)
- Sep. 2021
- ✓ IR channels activity (September 7, 2021)
- ✓ 1st on-orbit BB WUCD function test (September 9,2021)
- ✓ IR channels' NEdT test
- ✓ Pre-launch nonlinear coefficients test
- Oct. 2021
- ✓ 2nd on-orbit BB WUCD function test (October 11,2021)
- ✓ IR channels' NEdT test
- Nov. 2021
- ✓ On-orbit IR nonlinear coefficients update (November 11,2021)

FY-3E/MERSI-LL on-orbit Performance

Nov. 10, 2021 IR channel image—10.8um

Oct. 10,2021 globle map of IR channels

FY-3E/MERSI-LL on-orbit Performance

- ✓ Using the 2nd BB WUCD cool-down data to evaluate the NEdT of FY-3E/MERSI-LL IR channels;
- ✓ Four 1km IR channels'NEdT are less than 0.1K, two 250m channels'NEdT ara less than 0.18K;
- Because of on-orbit radiant cooling down, the NEdT of IR detectors are better than pre-lanunch vacuum test result;
- ✓ Comparing with FY-3D/MERSI, the sentivity of IR detector has been improved significantly.

FY-3E/MERSI-LL IR Radiometric Calibration validation

- Period: Sep. 19-30, 2021
- Reference instrument: Metop-B/IASI

- IR channals calibration bias show temperature dependent characteristic:
- At low temperature sense, the biases are up to 4 K.

- Secondary radiant cooler temperature measurement out-of work, so radiant cooler temperature control were turned off after IR activity;
- IR detector operating temperature inconsistent with pre-launch test, non-linear coefficients are not suitable ;
- Pre-launch nonlinear coeffcients have not suitable due to on-orbit radiant cooler cooling down;

FY-3E/MERSI-LL IR Radiometric Calibration validation

- Based on SNO collocated data to calculate the nonlinear coefficients on-orbit, using Metop-B/IASI
 - ➢ Time difference: 600s
 - Spacial Distance : 1km
 - ➢ Geometry difference: |cos(senz1)/cos(senz2)-1| <0.01</p>
 - \blacktriangleright Uniformity: std/ave < 0.005
 - ➢ Observation angle: FY_senz<10°</p>

FY-3E/MERSI-LL IR Radiometric Calibration validation

Ψ

300 320

320

After calibration update:

Reference		СНЗ	CH4	CH5	CH6	CH7
A-IASI	mean bias	-0.144	-0.067	-0.105	0.074	0.068
10,2021)	STD	0.063	0.032	0.053	0.038	0.037

- Period: Oct. 6-10, 2021
- Reference instrument: Metop-A/IASI

Long-term stability of FY-3E/MERSI IR channels

- Mean bias of 4.05 and 8.55 um channels shows periodical variation;
- 4.05um calibration bias variation matched with instrument temperature, the bias has to about 0.8K at the end of April;

 $L_{BB} = Planck(T_{BB}) + f(T_{BB}) \iff$ $= c_0 + c_1 \cdot Planck(T_{BB})$

Environment radiation reflected by BB

Long-term stability of FY-3E/MERSI IR channels

Diagram of BT (MERSI - IASI) FY3E_MERSI IASI_V1 CH_07-12.0um

 Mean bias of 7.2,10.8 and 12.0 um channels are stable after IR activity, the mean biases are less than 0.4K during life time until now;

Long-term stability of FY-3D/MERSI IR channels

- Mean bias of 4.05 and 8.55 um channels shows periodical variation;
- Mean bias of 7.2,10.8 and 12.0 um channels are stable until now;

Diagram of BT (MERSI - IASI) 2021-01-12~2022-05-02 FY3D MERSI METOP-B IASI. CH 22-7.2um MEAN 1.60.8 € 0.0 -0.8-1.62021-01 2021-05 2021-09 2022-01 2022-05 FY3 L1质量监测平台 Diagram of BT (MERSI - IASI) 2021-01-12~2022-05-02 FY3D_MERSI_METOP-B_IASI. CH_24-10.8um MEAN 1.6 0.8 € 0.0 -0.8 -1.62021-01 2021-05 2021-09 2022-01 2022-05 FY3 L1质量监测平台 Diagram of BT (MERSI - IASI) 2021-01-12~2022-05-02 FY3D_MERSI_METOP-B_IASI. CH_25-12.0um MEAN 1.6 0.8 £ 0.0 -0.8-1.62021-01 2021-05 2021-09 2022-01 2022-05

FY3 L1质量监测平台

Summary and discussion

- ✓ FY-3E/MERSI-LL IR channels' sentivity has been improved significantly comparing with FY-3D/MERSI, four 1km IR channels'NEdT are less than 0.1K, two 250m channels'NEdT ara less than 0.18K;
- ✓ Due to FY-3E/MERSI-LL radiant on-orbit cooling down, non-linear coefficients need to be derived in orbit. Using IASI as reference instrument, and considering the effect of environmental radiation in on-orbit calibration model, during the on-orbit test we derive the non-linear coefficients and blackbody radiance correction coefficients.
- Calibration validation results and Lifetime calibration bias monitor show the new coefficients have worked well, 2 channels' biases show periodical variation, maybe due to the instrument temperature changes and the environmental radiant reflected by BB is not corrected very well.

Thank you