

SLIMED at NOAA

Bikash Basnet¹, Fangfang Yu² and Xiangqian Wu³

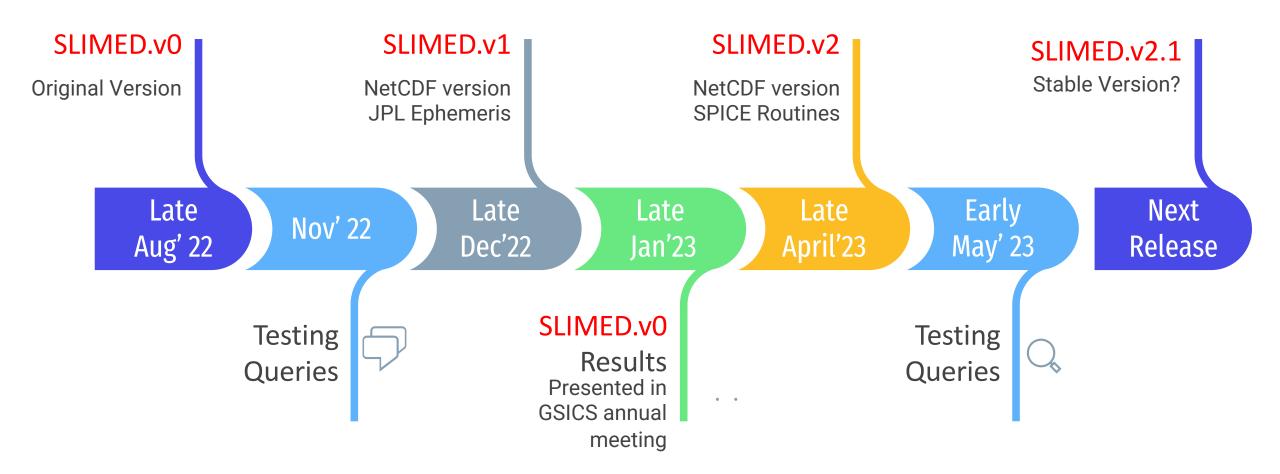
1: Global Science and Technology (GST) Inc 2: University of Maryland 3: NOAA/NESDIS/STAR

GSICS VIS/NIR Monthly Web Meeting May 11, 2023

Global Space-based

Contents of this presentation is solely the opinions of the authors and does not constitute a statement of policy, decision, or position on behalf of NOAA or the U.S. government.

- NOAA supports the initiative to convert the SLIMED from IDL to Python and to make it available to GSICS (and broader community?).
 - Dec 2022: Implemented v0 (released in Aug 2022).
 - Feb 2023: presented to the GSICS Annual Meeting that SLIMED is
 - Comparable to GIRO in the visible (0.4 0.7 μ m) and near infrared (0.7 1.0 μ m) spectrum; and
 - Superior to GIRO in the shortwave infrared $(1 3 \ \mu m)$ spectrum.
 - May 2023: Confirmed that v2 (released Apr 2023) is comparable with v0.
 - Details in the following slides.
- NOAA envisioned a modularized Python model to accommodate all participating models.
 - ROLO/GIRO, SLIMED, LIME etc.
 - In line with Tom & Hugh's presentation to the GSICS Annual Meeting.
- Path forward:
 - Confirmation of participating models.
 - Consensus on modules and interfaces, for example those outlined by Tom & Hugh.
 - Release of the SLIMED package for conversion.
 - Coordination of the effort (in sequence or parallel), review & verification, and support.



- Hugh released SLIMED.v2 in April 2023.
- NOAA compared SLIMED.v2 with v0.

۲

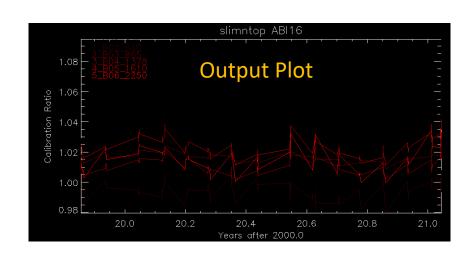
Stable released version of SLIMED model will be helpful before it is converted to python.

1. SLIMGIRO Converter

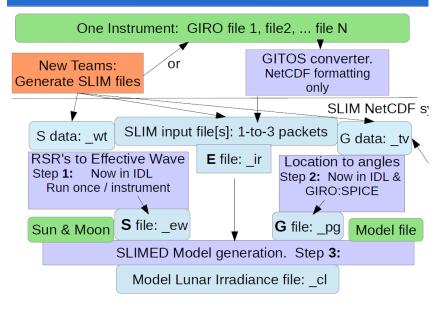
- ABI16_tv and ABI16_ir generated.
- Comparison of output files in progress.

? RSR's to effective wavelength.

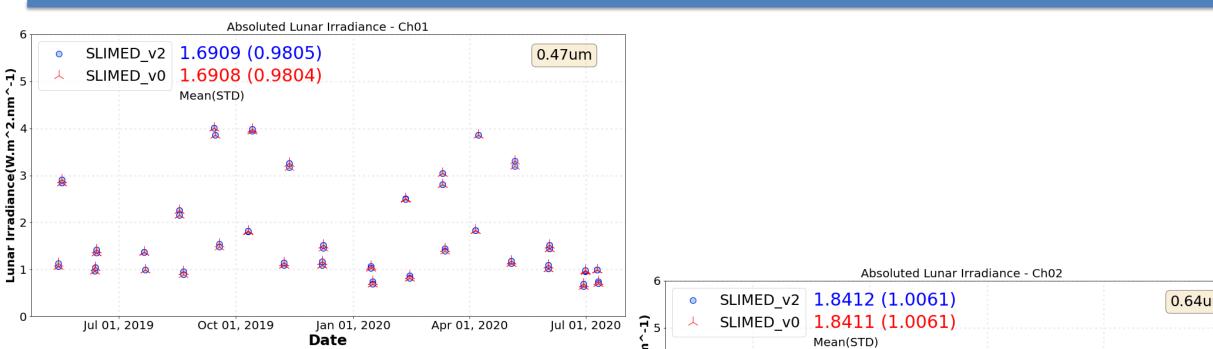
- ABI16_ew generated.


3. Time & Location to angles & Distance

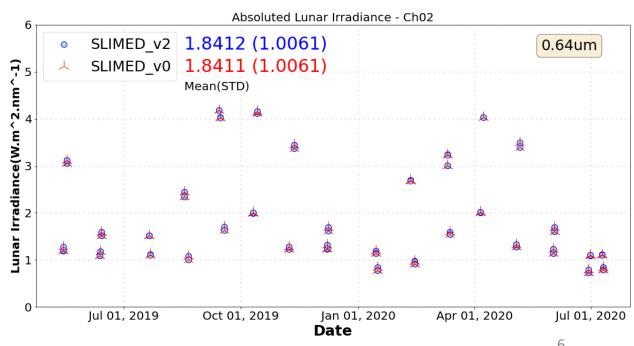
- Two modes tested
 - sim2pg:sat_pos
 - sim2pg:tele_loc
- ABI16_pg generated.



– ABI16_mc generated.

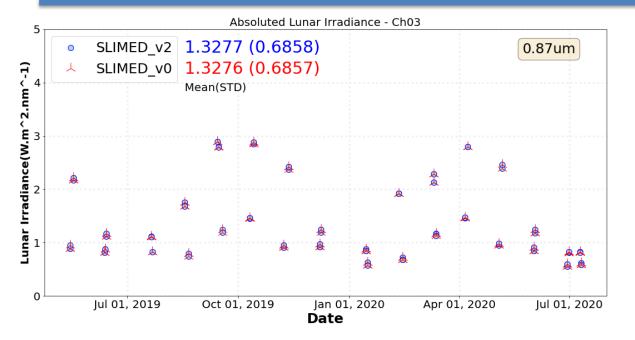


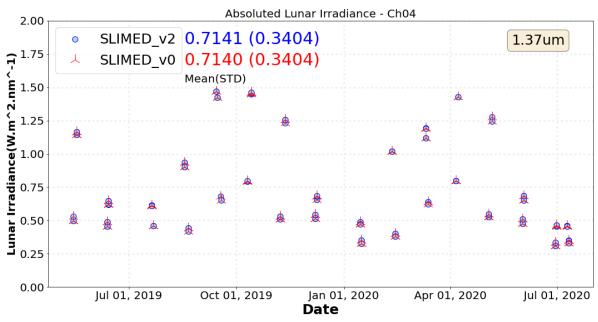
Flow: SLIMED in NetCDF



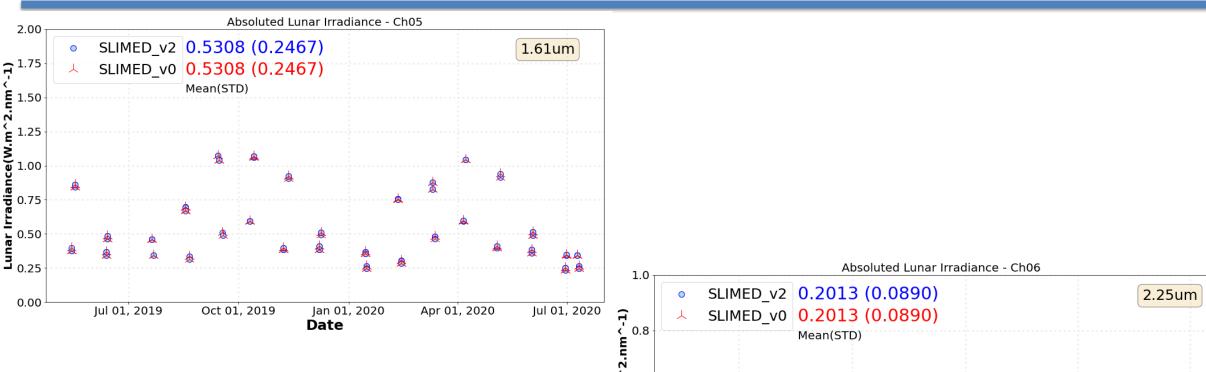
SLIMED.v2 vs v0 Comparison : G16 Band 1,2

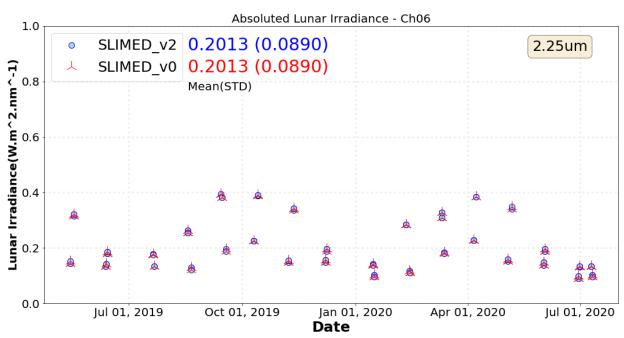
- Absolute Lunar Irradiance outputs from SLIMED v0 and SLIMED.v2 were compared.
- Similar outputs for G16 band 1 and 2. Both mean and STD metric within 0.01%. _





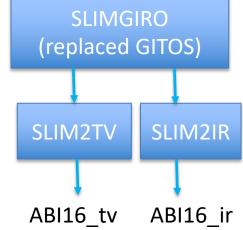
SLIMED.v2 vs v0 Comparison: G16 Band 3,4


- Similar outputs for G16 band 3 and 4.
 - Both mean and STD metric within 0.01%.



SLIMED.v2 vs v0 Comparison: G16 Band 5,6

- Same outputs for G16 band 5 and 6.
 - Both mean and STD metric are same.


SLIMED.v2 SLIMGIRO module test

- SLIMGIRO module ingested GIRO Lunar output files and converted to SLIMED model inputs.
 - GIRO lunar output files also contain Lunar input files information needed.
- The module ran successfully and output were produced.
 - Input
 - G16 ABI (May'19-July'20) GIRO output files
 - Output
 - ABI16_tv
 - Observation time (Date)
 - Satellite Position(XYZ of earth centered inertial position)
 - Oversampling factor
 - ABI16_ir
 - irradiance observed
 - Observed uncertainty(1 sigma)

ABI16_tv

- Same satellite position
- Two date formats in new file
 - Difference of ~5 seconds in date UTC format.
- Oversampling factor present.
 - Same value for all indexes present.
 - For ABI, it should be one value for each band.
 - Absent in SLIMED package file

No tele_loc available in new file

- This is correct as these are satellite measurements.
- Tele_loc are observatory measurements.

CWG output (ABI16_tv)

sat_pos =

41363.18, 41398.57, 41630.86, 34169.66, 34061.24, 30642.36, 30515.34, 41498.4, 41465.34, 35458.13, 35357.96, 37494.27, 37409.52, 31204.11, 31079.73, -40514.75, -40565.43, -40664.47, -40712.82, -42020.09, -42004.53, -40585.94, -40635.52, -42159.05, -42160.82, -40607.54,

date = 1557838090.00002, 1557838150.00001, 1557842950.00001, 1558107848.99999, 1558107908.99999, 1558109649.00001, 1558109709, 1560341965.99999, 1560342025.99999, 1560347365.99999, 1560347425.99999, 1560432206, 1560432266, 1560435805.99999, 1560435865.99999, 1563652996,

date2 =
"2019-05-14T12:48:10",
"2019-05-14T12:49:10",
"2019-05-14T14:09:10",
"2019-05-17T15:44:09",
"2019-05-17T15:45:09",
"2019-05-17T16:14:09",
"2019-05-17T16:15:09",
"2019-06-12T12:19:26",
"2019-06-12T12:20:26",
"2019-06-12T13:49:26",
"2019-06-12T13:50:26",

oversamp_fa = 1.012398, 1.01239

Hugh output (ABI16_tv)

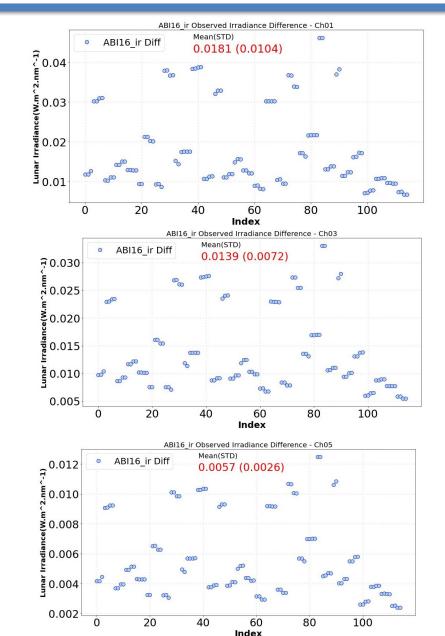
sat_pos =

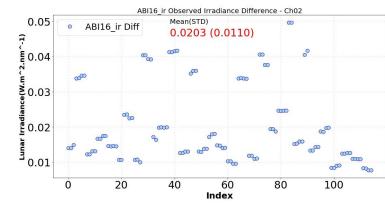
41363.18, 41398.57, 41630.86, 34169.66, 34061.24, 30642.36, 30515.34, 41498.4, 41465.34, 35458.13, 35357.96, 37494.27, 37409.52, 31204.11, 31079.73, -40514.75, -40565.43, -40664.47, -40712.82, -42020.09, -42004.53, -40585.94, -40635.52, -42159.05, -42160.82, -40607.54,

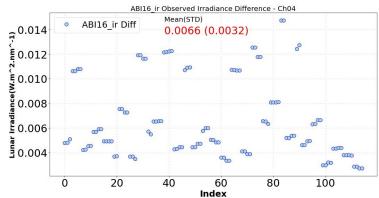
date =
"2019-05-14T12:48:04.997",
"2019-05-14T12:49:04.998",
"2019-05-14T14:09:05.000",
"2019-05-17T15:44:04.000",
"2019-05-17T16:14:03.998",
"2019-05-17T16:15:03.999",
"2019-06-12T12:19:21.001",
"2019-06-12T12:20:21.001",
"2019-06-12T13:49:21.001",
"2019-06-12T13:50:21.001",
"2019-06-12T13:50:210

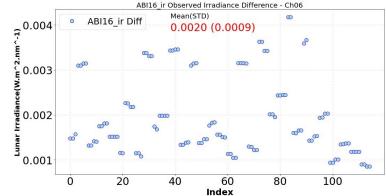
tele loc = 19.53601. -155.5768. 3402 : for testing?

No oversampling factor data



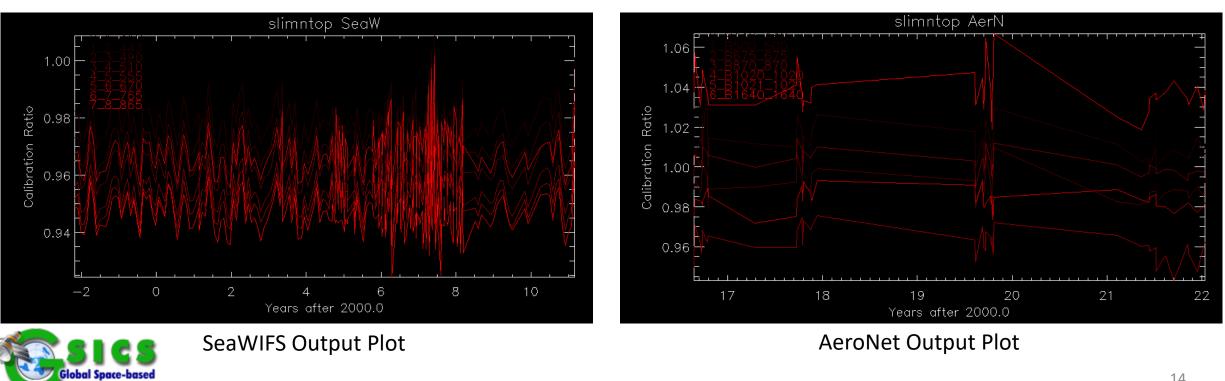

SLIMED.v2 SLIMGIRO output by CWG vs Hugh




- ABI16_ir
 - Difference in observed irradiance values between new outputs vs SLIMED package file.
 - Mean Difference
 - Bands1-3
 - ▶ 1.3-2%
 - Bands4-6
 - ▶ 0.2-0.6%

- SLIMED.v2 IDL package was successfully run for provided ABI16 input files.
 - Absolute Lunar Irradiance was compared with that of SLIMED_v0 for provided G16 ABI dataset.
 - Bands 1-4: Absolute Lunar Irradiance Mean/STD metric within 0.01%.
 - Bands 5-6: Same Absolute Lunar Irradiance.
- SLIMGIRO ingest module runs well and generated outputs.
 - SLIMGIRO outputs were compared with SLIMED package files.
 - Difference in some variables of output files are currently being investigated.

Reference Slides


Successful Runs.

SeaWIFS ullet

Inter-Calibration System

- **AeroNet on Mauna Loa** ullet
 - Obs @3402m

Instrument	Acronym	Number of				Phase			%
		Band	Lun	Times	Points	Min	Abs	Max	Wax
LEO	_	_	_	_	_	LEO	_	_	_
SeaWIFS	SeaW	8	144	204	1632	-48.9	5.1	65.5	57
Obs. @3402 m	AerN	7	20	50	350	-73.9	4.3	86.8	52

