

# Advances in DCC N20 Stability and Calibration Methodologies

Prathana Khakurel, David Doelling, Conor Haney, Rajendra Bhatt, Arun Gopalan, Benjamin Scarino

GSICS VIS/NIR monthly web meeting, Sept 12, 2024



# Background

- DCC calibration technique (DCCT), an ensemble statistical approach, first introduced by Hu et al. in 2004 for monitoring CERES instrument calibration, particularly effective for VIS and NIR bands
- Doelling et al. 2011 (GSICS ATBD) and 2013 used the Hu BRDF and PDF mode statistic to monitor the stability of visible imagers
  - Noted that the DCC reflectivity varied across the tropics for all bands
- Multiple VIS-NIR sensitivity studies from the calibration community
  - Median, inflection point statistics
  - footprint size, seasonal models, BT thresholds
- Bhatt et al, 2017 and 2019 developed channel-specific monthly empirical BRDFs
  - DCCs follow the sun and have a well described seasonal migration
  - SWIR bands impacted by cloud particle size and atmospheric absorption
  - reduced natural variability by up to 45% in Aqua-MODIS SWIR bands
  - 65% NPP-VIIRS SWIR bands based on PDF mean statistic



# Current VIIRS DCC Methodology

- Data Used
  - For this study, NOAA-20 (N20) VIIRS NASA level 1B C2.1 pixel radiances , sub-sampled at every other scanline and pixel
- DCC pixels selection criteria
  - BT(11µm) < 205 K
  - Spatial Homogeneity  $(H_{0.65}) < 3\%$
  - SDV (11µm) < 1 K
  - solar zenith angles (SZAs) and view zenith angles (VZAs) are limited to less than 40 degrees
  - tropical zone of  $\pm 20^{\circ}$  latitude
- BRDFs
  - Hu BRDF for the visible bands
  - Empirical monthly BRDFs for each SWIR band
- Stability monitoring statistics
  - Use the PDF mode for the visible bands
  - Use the mean statistic for SWIR bands



# Annual and Monthly BRDF models

- Derived by partitioning the DCC-identified pixel Radiance (L') into angular bins defined by  $5^{\circ}$  SZA,  $5^{\circ}$  VZA, and  $10^{\circ}$  relative azimuth angle (RAA) intervals
- The reference angular condition chosen (SZA = 22.5°, VZA = 32.5°, RAA = 145°) represented the most frequently sampled angular conditions, ensuring robust statistical representation.

$$L_{corrected-annual} = L'x \frac{BRDF(22.5^{\circ}, 32.5^{\circ}, 145^{\circ}, annual)}{BRDF(SZA, VZA, RAA, annual)} \qquad \qquad L_{corrected-monthly} = L'x \frac{BRDF(22.5^{\circ}, 32.5^{\circ}, 145^{\circ}, annual)}{BRDF(SZA, VZA, RAA, annual)}$$

#### Where,

 $L_{corrected-annual}$  = BRDF corrected radiances after applying annual BRDF  $L_{corrected-monthly}$  = BRDF corrected radiances after applying monthly BRDF



#### Comparison of various BRDF correction models for global domain





#### DCC over ocean vs DCC over land

- Land and Ocean have different microphysical properties
- The land DCC radiance response and intensity is greater over land than over oceans
- Ocean has wider convective cores; longer sustained updrafts
- Ocean has distinct day/night (greater intensity) variation in convective system
- L1B product provides a pixel surface type with each pixel
- Build a separate empirical land and ocean DCC BRDFs improve the overall stability of the DCC-IT methodology

| Coverage | Surface | No of<br>Pixels        | Channel scaled radiance<br>(Wm <sup>-2</sup> sr <sup>-1</sup> µm <sup>-1</sup> ) |        |        |        |  |
|----------|---------|------------------------|----------------------------------------------------------------------------------|--------|--------|--------|--|
|          |         |                        | 1.24µm                                                                           | 1.38µm | 1.61µm | 2.25µm |  |
| Tropics  | All     | 104.1x10 <sup>6</sup>  | 98.4                                                                             | 69.9   | 18.1   | 8.9    |  |
| •        | Land    | $27.5 \text{x} 10^{6}$ | 100.7                                                                            | 73.3   | 19.0   | 9.3    |  |
|          | Ocean   | $75.7 \text{x} 10^{6}$ | 97.5                                                                             | 68.6   | 17.8   | 8.8    |  |
| ТWР      | All     | 42.5x10 <sup>6</sup>   | 97.1                                                                             | 68.1   | 17.6   | 8.7    |  |
|          | Land    | $4.7 \mathrm{x10}^{6}$ | 98.8                                                                             | 70.0   | 18.4   | 8.9    |  |
|          | Ocean   | $37.9 \times 10^{6}$   | 97.2                                                                             | 68.1   | 17.7   | 8.7    |  |

- DCC over land is brighter than DCC over ocean (3.2%-6.9%)
- Need to take into account the land and ocean brightness difference when combining land and ocean OCC



### Land BRDF model normalized to ocean

 $L'_{corrected_{land}} = L'_{land} \quad x \frac{\frac{BRDF_{ocean}(22.5^{\circ}, 32.5^{\circ}, 145^{\circ}, annual)}{BRDF_{land}(SZA, VZA, RAA, month)}$ 

$$L_{corrected_{ocean}} = L'_{ocean} \ x \frac{BRDF_{ocean}(22.5^{\circ}, 32.5^{\circ}, 145^{\circ}, annual)}{BRDF_{ocean}(SZA, VZA, RAA, month)}$$

$$L_{corrected_{combined}} = L'_{corrected_{land}} + L_{corrected_{ocean}}$$

Where,  $L_{corrected_{land}} = BRDF$  corrected radiances after applying monthly land BRDF  $L_{corrected_{ocean}} = BRDF$  corrected radiances after applying monthly ocean BRDF.

For this approach we normalize land with ocean and ocean with ocean Takes into account the brightness difference between land and ocean

# NASA CERES

#### Combined Land-only (normalized to ocean) and Ocean-only BRDF models





#### BRDF analysis in global domain

| SN | Tropic       | BRDF                                  | Channel Mean Standard Error (%) |                |                 |                 |  |
|----|--------------|---------------------------------------|---------------------------------|----------------|-----------------|-----------------|--|
|    | surface      |                                       | 1.24µm<br>(M8)                  | 1.38µm<br>(M9) | 1.61µm<br>(M10) | 2.25μm<br>(M11) |  |
| 1  | All          | None                                  | 0.55                            | 1.29           | 1.69            | 1.27            |  |
| 2  | All          | Annual All                            | 0.47                            | 1.10           | 0.85            | 0.70            |  |
| 3  | All          | Monthly All                           | 0.30                            | 0.71           | 0.63            | 0.50            |  |
| 4  | Land-only    | None                                  | 0.57                            | 1.24           | 1.72            | 1.31            |  |
| 5  | Land-only    | Annual Land                           | 0.50                            | 1.08           | 1.29            | 1.03            |  |
| 6  | Land-only    | Monthly Land                          | 0.30                            | 0.72           | 0.75            | 0.60            |  |
| 7  | Ocean-only   | None                                  | 0.49                            | 1.25           | 1.42            | 1.00            |  |
| 8  | Ocean-only   | Annual Ocean                          | 0.47                            | 1.15           | 0.77            | 0.60            |  |
| 9  | Ocean-only   | Monthly Ocean                         | 0.27                            | 0.69           | 0.59            | 0.43            |  |
| 10 | Land + Ocean | Monthly Land (Land)* + Monthly Ocean  | 0.45                            | 0.98           | 0.94            | 0.76            |  |
| 11 | Land + Ocean | Monthly Land (Ocean)** + Monthy Ocean | 0.24                            | 0.62           | 0.48            | 0.37            |  |

and BRDFs are normalized by land pixels Land BRDFs are normalized by ocean pixels

- Monthly BRDFs outperform annual models, reducing temporal variation by up to 62% and effectively removing seasonal DCC radiance signatures compared with no BRDF application
- Combining land and ocean data after normalization achieves up to 26% additional trend SE reduction compared to the monthly BRDFs

# Kernel Density Estimation(KDE) & PDF Statistics



- The PDF shape is dependent on the radiance interval, which result in bin discretization,
- Kernel density estimation (KDE) from the gaussian\_kde function



- Mean = average of the pixel radiances
- **Median** = radiance where half of the pixels are a lesser radiance and half of the pixels are higher radiance
- Mode = radiance with the greatest frequency
- Inflection point = radiance where the curvature sign changes (greater than mode and 10%\*max frequency)



#### 2019 monthly PDF histograms



• The visible PDF shapes are consistent over the months



• Either inadequate BRDF or missing DCC microphysical parameter



#### 2019 monthly KDE histograms



• The visible KDE shapes are consistent over the months

• The KDE statistics should be similar monthly



12

• The KDE statistics will vary monthly



#### May yearly KDE histograms



• The visible KDE shapes are consistent inter-annually





#### M5 0.65 µm VIIRS stability



• For visible bands the KDE mode and inflection point are more stable than the PDF

The KDE inflection point is the most stable KDE statistic



#### M10 1.61 µm VIIRS stability



• The inflection point is difficult to pinpoint due to the PDF discretization, finds the first slope change, maybe try half maximum

15

# Trend standard errors (%) by KDE/PDF statistics

|           | Standard error (%) |      |        |            |      |      |        |            |
|-----------|--------------------|------|--------|------------|------|------|--------|------------|
| N20-VIIRS | KDE                | KDE  | KDE    | KDE        | PDF  | PDF  | PDF    | PDF        |
| channel   | mode               | mean | median | inflection | mode | mean | median | inflection |
| M3        | 0.40               | 1.00 | 0.77   | 0.29       | 0.48 | 1.00 | 0.77   | 1.06       |
| M4        | 0.40               | 0.99 | 0.76   | 0.33       | 0.46 | 1.00 | 0.78   | 1.16       |
| 101       | 0.39               | 1.01 | 0.77   | 0.33       | 0.39 | 1.02 | 0.78   | 1.09       |
| M5        | 0.33               | 1.02 | 0.75   | 0.21       | 0.38 | 1.02 | 0.76   | 0.95       |
| M7        | 0.23               | 0.93 | 0.58   | 0.22       | 0.28 | 0.93 | 0.60   | 0.79       |
| M8        | 0.30               | 0.24 | 0.23   | 1.01       | 0.36 | 0.24 | 0.24   | 0.68       |
| M9        | 0.99               | 0.62 | 0.57   | 2.21       | 1.10 | 0.63 | 0.56   | 1.20       |
| 103       | 0.70               | 0.48 | 0.50   | 1.92       | 0.74 | 0.48 | 0.52   | 0.86       |
| M10       | 0.72               | 0.48 | 0.50   | 1.76       | 0.81 | 0.48 | 0.54   | 0.93       |
| M11       | 0.54               | 0.38 | 0.38   | 1.52       | 0.64 | 0.38 | 0.39   | 0.69       |

• Bold text indicates the lowest trend standard errors

• Mean and Median should not depend on either the PDF or KDE approach

# Updated VIIRS DCC Methodology

- Data Used
  - NOAA-20 (N20) VIIRS level 1B pixel radiances , sub-sampled at every other scanline and pixel
- DCC pixels selection criteria (no change)
  - BT(11µm) < 205 K
  - Spatial Homogeneity  $(H_{0.65}) < 3\%$
  - SDV (11µm) < 1 K
  - solar zenith angles (SZAs) and view zenith angles (VZAs) are limited to less than 40 degrees
  - tropical zone of  $\pm 20^{\circ}$  latitude
- BRDFs
  - Hu BRDF for the visible bands
  - Ocean and Land empirical monthly BRDFs for each SWIR band
- Stability monitoring statistics
  - Use KDE instead of PDF to construct histograms
    - Do not need to estimate histogram interval, the interval is optimized
    - Provides robust histograms for sparse DCC sampling, PDF shape is noisier
  - Use the KDE inflection for the visible bands
  - Use the mean statistic for SWIR bands, use median for some SW bands
    - There are still inter-annual variations for SWIR bands not resolved by the empirical BRDFs



# Conclusions

- Monthly BRDFs outperform annual models, reducing temporal variation by up to 62% and effectively removing seasonal DCC radiance signatures compared with no BRDF application
- Applying separate ocean and land BRDFs achieves up to 26% additional trend SE reduction compared to the monthly BRDFs for SWIR bands
  - Must normalize the brighter land reflectances with the ocean reflectance
- The visible band PDF shapes are similar both monthly and inter-annually
- The SWIR band PDF shapes vary both monthly and inter-annually
- The kernal density estimation (KDE) to provide a PDF shape removes the discretization impact and performs under sparse sampling
- The KDE/PDF mean, median, mode, and inflection points were analyzed for imager stability assessments
  - Use the KDE inflection for the visible bands
  - Use the mean statistic for SWIR bands, use median for some SW bands
    - There are still inter-annual variations for SWIR bands not resolved by the empirical BRDFs