

CENTER FOR EARTH SYSTEM RESEARCH AND SUSTAINABILITY (CEN)

The Radiometric Calibration Drift of CrIS

Dr. Martin Burgdorf 12.12.2024

Agenda

- 1 Introduction
- 2 Available observations
- **3** Data reduction methods
- **4** Results
- **5** Conclusions

Introduction: Observations of the Moon With CrIS

CrIS footprints in the sky

- Diameter of Moon: $\approx 0.5^{\circ}$
- Diameter can vary by up to 14%.
- DS and ICT fill the FOV ☞correction factor

Spectra From Consecutive Scans

- (Almost) same flux from Moon in 3 consecutive scans (8 sec apart, FOV 1)
- Moon very close to center of FOV in scan
 19
- Compare to calculated angle between
 and CrIS line-of-sight vector in ECI
- Discrepancy $\approx 2^{\circ}$ or ≈ 2 min
- Pointing improvement (Likun Wang)

Available Observations

A Unique Dataset

Thousands of Spectra (made available by Yong Chen)

- 650 1095, 1210 1750, 2155 2550 cm⁻¹
 - SNPP since Oct 2011 (Dec 2014)
 - NOAA-20 since Nov 2017
- Several obs. in 2-4 FOVs per "Moon orbit"
 - 667 events with SNPP available
 - 326 events with NOAA-20

Only SW Presented Here

- <u>SW is free of artifacts (Christiansen feature,</u> <u>"ringing")</u>
- <u>SW receives similar fluxes from Moon as</u> <u>from Earth</u>
- More to come...

3

Methods: Making Different Observations Comparable

Radiance = f(phase angle)

- Radiance needs scaling by factor $(D_{FOV}/D_{moon})^2 \approx 3.4$
- $L_{2237}(45^{\circ}) = 4.1 \times L_{2237} (90^{\circ})$
- CrIS on SNPP and NOAA-20 agree at First Quarter, but not at Waxing Gibbous.
- FOV probably equal
- SWIR not linear?

Radiance = f(distance Moon - Sun)

- Fit to Brightness temperature = f(phase angle) subtracted
- Wien approximation means ΔT_{Br} is equivalent to $\Delta L/L$.
- *T_{Br}* of Moon decreases with increasing distance from Sun.
- Slope of decrease differs from SNPP to NOAA-20 by only a few %.

Results: Is There a Radiometric Calibration Drift of CrIS?

Measured Radiance = f(time)?

- Correlation between ΔT_{Br} and time is positive for either sat.
- Two-tailed probability for Pearson correlation coeff.:
- SNPP has 0.00004
- NOAA-20 has 0.3
- Confidence for presence of calibration drift $\approx 4\sigma$.
- Error > 0.1 K per decade (95% confidence) for SNPP

5

Conclusions

Characterisation of CrIS In-Flight With the Moon

- Pointing check in 2 directions far off Earth
- Bias between SNPP/N-20 as a function of flux
- Check of diameter of FOV
- Check of radiometric stability

 Trend for SNPP
 previous finding by x3
 Lunar radiance is perfectly reproducible.

 IR spectrum of >> with 0.2 K absolute accuracy
 - ✓ Empirical model of Moon as IR reference

Open questions and discussion

Contact

Martin Burgdorf

Center for Earth System Research and Sustainability (CEN)

Universität Hamburg Bundesstraße 53 20146 Hamburg

+49 40 42838-8121 martin.burgdorf@uni-hamburg.de

