

CMA Agency Report in 2021

Scott Hu

CMA/NSMC

GSICS Annual WebMeeting, March 29, 2021

Presentation Overview

- Summary of Agency's GSICS Activities, Action & Achievements
- Agency's support to GDWG Activities
- Agency's support to GRWG Activities
- Agency's Instruments Updates & Planned launches (LEO/GEO/MEO) – relevant to GSICS

Level 1 Reprocessing Activities

Summary of Agency's GSICS Activities, Action & Achievements

- FY-2X, FY-4A and FY-3D instrument Cal monitoring:
 - GEO-LEO, LEO-LEO for operational calibration monitoring
 - Add FY-4A AGRI & GIIRS monitoring system.
- Prelaunch preparetion for FY-3E and FY-4B:
 - TVAC test data processing and instrument specification meet evaluation, calibration and validation system development.
 - FY-3E/HIRAS-II, MERSI-LL, WindRAD, MWTS/MWHS, GNOS...
 - FY-4B/AGRI, GIIRS, RSI

Recalibration/Reprocessing for long term FY sensors

- Optical imager: FY-1/3 VIRR, FY-3 MERSI, FY-2 VISSR
- Optical sounder: FY-3/IRAS
- Microwave sounder: FY-3/MWHS&MWTS
- Microwave imager: FY-3/MWRI

Current LEO/GEO FY satellite and instruments status on orbit

http://www.nsmc.org.cn/en/NSMC/Channels/100029.html

Satellite		Launch	EO instruments						
FY-3B	(1.)	2010-11-05	MERSI	VIRR	IRAS	MWTS	MWHS	MWRI	
	(L)		SBUS	TOU	ERM	SIM	SEM		
FY-3C (B)	(D)	(B) 2013-09-23	MERSI	VIRR	IRAS	MWTS	MWHS	MWRI	
	(D)		SBUS	TOU	ERM	SIM	SEM	GNOS	
FY-3D (Op	$(\mathbf{O}_{\mathbf{P}})$	0047 44 45	MERSI	HIRAS	MWTS	MWHS	MWRI	IPM	
	(Op)	2017-11-15	GAS	WAI	SEM	GNOS			

Major calibration relevant events in 2020

- FY-4A AGRI reflective solar bands (RSB) calibration correction coefficients updates on 09/09/2020
- FY-3D/HIRAS third heating decontamination was done March,
 2021. The degradation of LW and MW1 is recovered after that.

Satellite		Location	Launch	EO instruments			
FY-2F	(L)	112 E	2012-1-13	S-VISSR			
FY-2G	(Op)	105 E	2014-12-31	S-VISSR			
FY-2H	(L)	97 E	2018-06-05	S-VISSR			-
FY-4A	(Op)	104.7 E	2016-12-11	AGRI	GIIRS	LMI	SEP

Satellite Status

- Op = Operational
- P = Pre-operational
- B = Back-up, secondary
- L = Limited availability

Instrument Status

Operational (or capable of) Operational with limitations Operational with Degraded Not Operational Functional, Turned Off

- Planned Launches are determined
 - FY-4A will be launched at end of May or earlier June, 2021
 - FY-3E EM will be launched at earlier July, 2021

Future Plan

- FY-3F AM plan to be launched at first half of 2022
- FY-3G Rainfall mission plan to be launched at second half of 2022
- FY-3H PM plan to be launched at 2024
- FY-4C plan to be launched at 2025

FY-3E Instruments configuration

There are totally 11 instruments onboard FY-3E satellite: Three completely new instruments including

Dual- frequency wind radar (WindRAD), Solar spectral irradiance monitor (SSIM) and Solar X-EUV Imagers (XEUVI).

Seven instruments be improved on the baseline of FY-3D.

MERSI-LL with Low Light band MWTS-3 with more 4 channels HIRAS-II with several significant upgrades GNOS-II with GNSS-R SIM-II involved the international instrument from swiss SEM with adding the Magnetic Field Detector (MFD) IPM-II with the triple-angles (nightside-nadir-daytime side).

Only one MWHS-2 inherited from FY-3D with no specification change.

NEdT of FY-3E/HIRAS-II from TVAC

- NEdTs of all channels for 3 bands get great improvement from 3D HIRAS and meet specification.
- Sensitivity of HIRAS in LW and SW are comparable to CrIS and IASI respectively.

Instruments	FY-4A	FY-4B	FY-4C
(AGRI)		\checkmark	\checkmark
(GIIRS)		\checkmark	\checkmark
(LMI)			\checkmark
Geostationary Rapid Scan Imager (RSI)		\checkmark	

RSI IS experimental multi-spectral flexible imaging radiometer.

- ✓Nominal scenario: 1 min continuous images of 2000km ×2000km;
- ✓ Ground resolution: 0.25km~0.5km(VNIR), 2km(LWIR);
- ✓True color images of 0.5km from geostationary orbit;

 \checkmark Full color band of 0.25km to perform star observations to determine the absolute LOS.

Channel/Band		Spectral (µm)	IFOV(µrad)	Focal Plane Array
	1	0.45~0.75	7	2048×1
	2	0.445~0.495	14	1024×1
VNIR	3	0.52~0.57	14	1024×2
	4	$0.62 \sim 0.67$	14	1024×1
	5	1.371~1.386	14	1024×1
	6	1.58~1.64	14	1024×1
LWIR	7	10.3~12.5	56	256×4

Profile of FY4B

FY-4A/AGRI IR Calibration Performance

	CH8_3.8 (286K)	CH9_6.25 (237K)	CH10_7.1 (248.5K)	CH11_8.5 (283K)	CH12_10.8 (286)	CH13_12.0 (285)	CH14_13.5 (258)
IASI-A	-4.1529	-0.2204	0.6307	0.1958	-0.1723	-0.0947	0.2434
IASI-B	-3.8784	-0.2355	0.6207	0.1901	-0.1904	-0.1265	0.1853

Tb bias are less than 0.3 k (operation phase) except ch8 and ch10, No strong seasonal variation; Calibration parameter of CH14 was updated in Aug. 2020 and large bias appear;

2021

2021

Highlight FY-4A/AGRI IR Rad. Calibration Performance

Diurnal Variations of Bias

There is no significant diurnal variation seen in FY-4A AGRI

FY-4A AGRI RSB calibration updates

AGRI RSB radiance releative bias before and after updates

after	通道 1	通道 2	通道 3	通道 5	通道 6
mean	1.358	0.273	-0.258	-0.927	0.523
std	5.963	5.563	5.269	4.080	6.064
before	通道 1	通道 2	通道 3	通道 5	通道 6
mean	1.358	-19.067	-5.260	-5.901	-17.047
std	5.963	4.421	4.993	3.835	4.742

FY-3D/HIRAS vs IASI

Correlation Analysis of Bright Temperature FY3D_HIRAS_METOP-A_IASI_src 681.25nm

- FY-3D/HIRAS mained stable operational status.
- Conducting the 3rd gas decontamination operation in 15~30 Mar, 2021.

Time

FY-3D/MERSI-II Reflective Solar Bands calibration bias

• Based on stable sites RTM to monitor calibration bias.

2/2021

Calibration biases of 15 bands are less than 3%, other 4 channes exceed 3%: B6-8, B19.

Band	Ch WL	Calibra	tion Bias	Annual
		201902	202002	Degradation rate
1	470	-0.595	-0.103	0.700
2	550	1.532	0.033	0.087
3	650	4.053	0.061	0.370
4	865	2.041	-1.357	0.751
5	1380			
6	1640	-4.467	-7.564	4.517
7	2130	-3.323	-5.962	1.332
8	412	-2.345	7.036	3.998
9	443	-1.856	1.667	1.729
10	490	0.458	0.218	0.529
11	555	6.115	-0.596	0.180
12	670	-0.548	0.238	0.235
13	709	1.15	2.046	-0.570
14	746	3.273	0.528	-1.082
15	865	-1.218	0.28	-0.264
16	905	2.591	-0.095	0.712
17	936	1.449	-1.301	0.655
18	940	1.826	0.089	1.546
19	1030	1.416	-4.411	1.908

LEO-LEO FY-3D/MERSI vs IASI

-1

-2

-3 -4

Mar

Daily

2018

Jul

Nov

Monthly

Mar

2019

Jul

Nov

Mar

2020

Jul

20171115-20210324 NSMC-GPRC

Nov

Mar

2021

- bands after update operation at end of 2019.
- MERSI is in stable operational status.

GIIRS Calibration monitoring based on O-B

- Add FY-4A/GIIRS into OMB FY satellite operatinal monitoring system.
- GIIRS calibration biases are within 0.7 K in LW band and 2 K in MW band.
- GIIRS long term calibration biases exhibit diurnal variation.
- Stable Long term monitoring are still in development.

Instrument Telmetry parameter monitoring

GSICS Agency Report

FY-3D Microwave Instrument Status monitoring

Calibration quality monitoring based on the simulated radiances

 Calibration quality monitoring based on the observations of similar instruments

Fengyun FCDR ReCAL program

Version	V1 (beta)	V2 (trial)	V3 (formal)
Status	Completed in 2019	Partly completed	To be finished at 2021/12
Main concerns	Lifetime recalibration of each instrument using consistent calibration framework	Focus on the recalibration model improvement to achieve the accuracy and stability	Focus on the inter-instrument consistency, gridded climate dataset

Sensors included:

- Optical imager: FY-1/3 VIRR, FY-3 MERSI, FY-2 VISSR
- Optical sounder: FY-3/IRAS
- Microwave sounder: FY-3/MWHS&MWTS
- Microwave imager: FY-3/MWRI
- The beta version (V1) datasets have been finished through the lifetime recalibration of each instrument in 2019.
- At present, the trial version (V2) datasets are finished for MWRI, MWTS and VIRR solar bands, meanwhile others are still ongoing.

FY-3/MWRI FCDR V1/V2

SNO&DD VS. GMI

Re-processed V2

Diagram of Bright Temperature Dif (MWRI_Cal vs GMI_Cal) MWRI_GPM_GMI_V0-1.2 10.7_TV

2016

Time

2014

Diagram of Bright Temperature Dif (MWRI_Cal vs GMI_Cal) MWRI_GPM_GMI_V0-0 10.7_TV

Operational

- Sensor
 Time range

 FY-3B/MWRI
 2010/11/11-2018/11/30

 FY-3C/MWRI
 2013/09/29-2019/06/30

 FY-3D/MWRI
 2017/11/25-present
 - V1 and V2 datasets are finished, covering FY-3B/C/D from 2010 to 2019 .
 - V2 dataset are processed using a full re-calibration algorithm including hot load reflector emissivity, back lobe of hot reflector, hot load efficiency, cold reflector RFI, and receiver nonlinearity correction.

GSICS Agency Report

2016

Time

2018

2020

2014

V2: RMSE all within 1.5K, mostly around 1K

2020

2018

FY/VIRR FCDR V2 (RSBs)

SNO VS. MODIS

Variation of sensor radiometric response both gradual and sudden degradation is corrected, and the radiometric stability and inter-platform consistency is improved after recalibration.
Lifetime RMS of the relative difference is within 5% for Ch1, 2, 6, 7, 8, while relatively larger for Ch9 at low signal.

Global Space-based Inter-Calibration System

CMA Lunar Measurement Campaign in Lijiang Observatory

Four Instruments: 3 Lunar spectrometer imagers, 1 Hyspetral Lunar photomer

- (1) VisNIR Ground-based Lunar Imaging Spectrometer (GLIS) (2015.12-2020.04-Now)
 (2) ShortWave Infared Lunar Oberved Infared Spectrometer (LOIS) (2019.12--Now)
 (3) VNIR LeSIRB-Lunar and Earth Spectral Imager Radiometry Benchmark (2019.12-Now)
 (4) VNIR-SW Hyperspectral Lunar photometer (2021.03--)
- LOIS (1000nm-2400nm)

Hyperspectral Lunar Photometer(400-1700nm)

CMA Ground-based Lunar observation Keep Ongoning Since 2015 and More and more Lunar instruments were involved

GLIS (400-1000nm)

LeSIRB (400-1000nm)

20190622 56.14°

JiLin-1 Small Satellite Support Space-borne Lunar Imaging

JILIN-01-09/B4 lunar image (559.61nm) June 2019

20190613 50.07° 20190614 37.52° 20190615_25.18° 20190616 12.26° 20190618_11.65° 20190620_34.22° 20190617_1.94° 20190621 45.25°

20190623 67.67°

Data Phase

Angle

20190624 78.46°

JiLin-1 Lunar observation (22 months since April, 2019)

(19 bands in Visible to NIR)

Dhoco

nalo (d

Agency's GSICS Activities, Action & Achievements Summary

CMA presentation title list at GSICS annual meeting 2021 :

Xiuqing Hu	Plenary	GRWG Report
Chengli Qi		CMA Agency report of 2020
QiFeng Lu,		Progress report from MW subgroup
Chengli Qi	IR subgroup	FY-3E/HIRAS-II pre-launch calibration and instrument erformance
Hanlie Xu		FY-3/VIRR TIR recalibration
Ling Sun	VISNIR	A Fengyun consistent VIRR calibration record for inheritable solar bands
Jing Wang	Subgroup	Pre-launch analysis of Rapid Scan Imager aboard FY-4B from TVAC test
QiFeng Lu	MW subgroup	Way forward of MW subgroup
Qifeng Lu		FY-3 satellite data quality and assimilation in NWP
Dawei An		Progress on FY-3/MWTS FCDR
Shengli Wu		SNO and DD analysis of MWRI
Yuan Li	UV subgroup	Research on UV solar reference spectrum base on MgII index for FY-3/OMS
		calibration
Qian Wang		Comparison of spectral radiance for UV-VIS high-resolution spectrometers
_		from GF-5/EMI and S5p/TROPOMI
Zhe Xu	GDWG	CMA GDWG Annual report 2020

Support to GDWG Activities

- A maximum of 1 slide highlighting your agency's support to GDWG.
 - Summary of the tasks your agency's supports in the GDWG.
 - Overview of the resources and time taken for this support.
 - Identify issues with this support, if any.

Introduce/Confirm the Agency's Personnel supporting GSICS

🔅 EP

Peng Zhang

✤ GRWG

- Xiuqing (Scott) Hu, GRWG Chair
- Qifeng Lu, MW-subgroup Co-Chair
- Ling Sun, Recalibration
- Na Xu, IR and Solar band
- Lin Chen, Field Campaign
- Chengli Qi (new member) , IR Hyperspectral
- Shengli Wu(New member), Microwave subgroup

GDWG

- Zhe Xu,
- Yuan Li

Agency's GSICS activities to be discussed in this joint meeting.

- A maximum of 2 slides summarising:
 - Summarise the GSICS agenda items in this joint meeting that are especially of interest to your agency.
 - Identify any agency's activities that are not directly relevant to GSICS but may be of interest to the GSICS community with links to websites as available.

Thank you for your attention

WMO GSICS Portal http://gsics.wmo.int

GSICS Coordination Centre http://www.star.nesdis.noaa.gov/smcd/GCC/index.php

GSICS Product Catalog

https://www.star.nesdis.noaa.gov/smcd/GCC/ProductCatalog.php

GSICS Wiki

http://gsics.atmos.umd.edu/wiki/Home