

GSICS Agency Report - ISRO 2024

Pradeep K Thapliyal, Munn V Shukla, Shivani Shah, Nitant Dube

Space Applications Centre (ISRO) (pkthapliyal@sac.isro.gov.in)

ISRO, India

Presentation Overview

- Summary of Agency's GSICS Activities, Actions, and Achievements
- Agency's Instruments Updates & Planned launches that are relevant to GSICS
- Agency's Support to EP Activities
- Agency's Support to GDWG Activities
- Agency's Support to GRWG Activities
- Agency's Calibration Major Updates

Summary of ISRO's GSICS Activities, Actions, and Achievements

- Presently, 2 satellites INSAT-3D and INSAT-3DR are operational in GEO. Sounder onboard INSAT-3D is not functioning since Sep 2020.
- INSAT-3DS has been launched on 17-Feb-2024, with many improvements to mitigate the issues related to the blackbody calibration and mid-night sun-intrusion in INSAT-3D/3DR.
- EOS-06 (Oceansat-3), launched on 26 Nov 2022 is operational with Ku-band scatterometer, and 13band Ocean Color Monitor (OCM-3). SSTM operations have been stopped due to in-orbit anomaly.
- Data from Scatterometer and OCM-3 has been released to the users through BHUVAN web-portal.
- EOS-07 (Microsat-2B) was launched on 10-Feb-2023 in low-inclination orbit with a 6-channel Microwave Humidity Sounder (MHS) onboard. MHS L1 and L2 data are available through MOSDAC web-portal.
- Under GSICS, inter-calibration of IR channels are in demo phase with IASI-B/C and will be extended to CrIS. Ray-Matching method has been developed for inter-calibration of Vis/SWIR channels using MODIS and 6 years (2014-2021) data has been processed for INSAT-3D VIS/SWIR channels.

£

EOS-07 Millimeter-Wave Humidity Sounder (MHS)

200

183.31 + 0.96 GHz

183.31 ± 2.8 GHz 183.31 + 4.5 GHz

.83.31 ± 5.8 GHz 183.31 ± 11.56 GHz

183.31 + 15.75 GHz

(g/Kg)

20

15

MHS Retrieved

Tropical Cyclone BIPARJOY

(13 June 2023, 07:55 UTC)

MHS BT

Launch: 10-Feb-2023, SDSC/ISRO, SSLV-D2

- Demonstration of in-house developed mm-wave technology
- 450 km altitude, 37 deg inclined orbit
- Swath: ~1000 km
- Experimental: 15 minutes of orbit coverage
- ٠ 183.31+15.75 GHz band

Inter-Calibration of EOS-07/MHS with JPSS/ATMS observations

- Special campaign for near simultaneous observation of MHS with ATMS was made
- 4 channels with closest central frequencies used
- SBAF was computed using RTTOV-v13 simulation for ATMS and MHS for ECMWF diverse profile
- More such collocated observations are required to make a robust statistics

Vicarious Calibration of GEO Satellites: INSAT-3D/3DR (Joint ISRO-IMD Activity)

Top panel: Gain for VIS and SWIR bands derived from IMAGER TOA radiance and simulated (6S TOA radiance)

Bottom panel: The percentage difference in TOA radiance determined using (INSAT - 6SV)/6SV.

ISRO'S support to GDWG activities

- Generation of regular NRTC coefficients
- Presently Data is processed at IMD Delhi server with SAC/ISRO Software
- Planning to shift processing to SAC Ahmedabad
- Working on reprocessing of the entire INSAT-3D/3DR Imager data to fix the issues related to the Satellite Yaw-flip operation during eclipse period, 21-24 Mar, 21-24 Sep
- ✤ RAC coefficients will be generated once NRTC files are reprocessed for entire period.
- ISRO is discussing the modalities to display GSICS correction coefficients from IMD's RAPID tool. (Action on ISRO/IMD under GDWG)

ISRO'S support to GRWG activities

- Developed methodology for visible and SWIR channels inter-calibration using raymatching method with MODIS as reference.
 - 8 years (2014-2021) data has been processed for INSAT-3D VIS/SWIR
- Completed a case study to diagnose the calibration anomalies of INSAT-3D/3DR IR channels during pre and post yaw-flip period.
- ✤ A project has been taken along with IMD to reprocess historical data of Kalpana-1.
- Methodology for inter-calibration using CrIS as reference for INSAT-3D/3DR Imager is under progress.
- GEO-GEO intercalibration of INSAT-3D/3DR Imager with MSG-SEVIRI is being carried out
- Intercalibration for Microsat-2B MHS carried out with limited data using ATMS

- Launched on 17-Feb-2024 using GSLV-F14 rocket, from Satish Dhawan Space Centre (SDSC/ISRO)
- Improvements to mitigate the issues related to the blackbody calibration and mid-night sun-intrusion
- Presently, in IOT phase at 83E. After IOT it will replace INSAT-3D at 82E

Meteorological Payloads -

- 19 Channel Sounder
- · 6 Channel Imager
- Both the instruments have heritage of INSAT-3D
- Design identical to INSAT-3D with improvements in light of INSAT-3D onboard observations

Communication Payloads -

- Data Relay Transponder (DRT)
- Satellite Aided Search & Rescue (SAS&R) Transponder
- MET Transmitter

6-Channel Imager

Channel	Spectral Band (µm)	Spatial Resolution at Nadir (km)	SNR @ 100% or NEΔT@300K	
VIS	0.55-0.75	1 km	SNR>150	
SWIR	1.55-1.68	1 km	SNR>150	
MIR	3.80-4.00	4 km	1.4K	
WV	6.5-7.1	8 km	1.0K@230K	
TIR-1	10.3-11.3	4 km	0.35K	
TIR-2	11.5-12.5	4 km	0.35K	

19 - Channel Sounder (18 IR + 1 VIS)

Detector	Ch.	λc	Vc	Principal	Durnoso	
	No.	(µm)	(cm ⁻¹)	absorbing gas	i ui pose	
Long wave	1	14.68	681	CO_2	Stratosphere temperature	
	2	14.36	696	CO ₂	Tropopause temperature	
	3	14.06	711	CO_2	Upper-level temperature	
	4	13.69	731	CO_2	Mid-level temperature	
	5	13.35	749	CO ₂	Low-level temperature	
	6	12.63	792	H ₂ O	Total precipitable water	
	7	12.01	833	H ₂ O	Surface temp., moisture	
Mid wave	8	11.00	909	Window	Surface temperature	
	9	9.72	1029	O ₃	Total ozone	
	10	7.43	1347	H ₂ O	Low-level moisture	
	11	7.03	1422	H ₂ O	Mid-level moisture	
	12	6.51	1537	H ₂ O	Upper-level moisture	
Short wave	13	4.60	2174	N ₂ O	Low-level temperature	
	14	4.55	2200	N ₂ O	Mid-level temperature	
	15	4.48	2235	CO_2	Upper-level temperature	
	16	4.16	2404	CO_2	Boundary-level temperature	
	17	4.01	2493	window	Surface temperature	
	18	3.76	2659	window	Surface temperature, moisture	
Visible	19	0.695	14367	visible	Cloud detection during daytime	
		·	·			

डसरी डिंग्ल

Oceansat-3A

- Oceansat-3A will be launched in 2024
- ARGOS in Oceansat-3 will be replace by Millimeter-wave Atmospheric Temperature and Humidity Sounder (MATHS) Payload
- ✤ A 20-channel cross-track scanning Radiometer operating at 50-60GHz and 183.31±16.25GHz bands
- Atmospheric vertical Temperature & Humidity profiles with nadir spatial resolution of 25 km and 15 km, respectively.
- Developed in-house through Technology Development Program at SAC

MATHS Payload

FUTURE INDIAN GEO SATELLITES: (GISAT-1R)

MX-VNIR: Multispectral - Visible Near Infrared, HySI-VNIR: Hyperspectral Imager - Visible Near Infrared, HySI-SWIR: Hyperspectral Imager - Short Wave Infrared, MX-LWIR: Multispectral - Long Wave Infrared.

GISAT Strengths: (i) High spatial (1.2 km) and temporal resolution (10 minutes) from LWIR

GISAT Geophysical Products/Applications

VNIR/SWIR Bands

- Cloud Microphysics (Nowcasting Applications)
- Aerosol Optical Depth

LWIR Bands

- Nowcasting Applications
 - Cloud properties (type, amount, phase, height)
 - Atmospheric Stability Indices (Lifted Index)
 - Mid/Lower-Tropospheric Humidity
 - Total Precipitable Water (TPW)
 - Surface Skin Temperature (LST/SST)
- Aviation Applications
 - Thunderstorm Prediction
 - FOG Monitoring
 - Upper Air Turbulence
- High spatio-temporal resolution Rainfall
- Atmospheric motion vectors (AMV)
- Cyclone Monitoring

Band	Ch	SNR/ NEdT @ 300K	IFOV (m)	Range (µm)	Channels bandwidth (µm)
MX- VNIR	6	> 200	42	0.45 - 0.875	0.45-0.52 0.52-0.59 0.62-0.68 0.77-0.86 0.71-0.74 0.845-0.875
HyS- VNIR	158	> 400	320	0.375 - 1.0	Δλ : 4 nm
HyS- SWIR	256	> 400	190	0.9 - 2.5	Δλ : 7 nm
MX- LWIR	6	< 0.15K	1200	7.0 – 13.5	7.1-7.6 8.3-8.7 9.4-9.8 10.3-11.3 11.5-12.5 13.0-13.5

MX-VNIR: Multispectral Imager - Visible Near-IR, HySI-VNIR: Hyperspectral Imager - Visible Near-IR HySI-SWIR: Hyperspectral Imager - Short Wave Infrared MX-LWIR: Multispectral - Long Wave InfraRed.

GISAT Scan scenario

Scan area for two scan scenario (5 $^{\circ}$ & 10 $^{\circ}$)

Other Satellites/instruments: In consideration

GEO: INSAT-4th Generation Satellite

- a) Advanced Imager (legacy: GOES-ABI)
 - 16 bands from 0.5 13.5 μm with spatial resolution 250-500m for VIS and 1-2 km for IR
 - Faster scanning for nowcasting applications
 - FD (Full Disk), India (3000 km x 3000 km) and Mesoscale (1000 km x 1000 km)
 - Capability to provide FD image every 5 minute, Indian landmass every 2 minutes and Mesoscale images every 30 seconds.

b) Lightning mapper

c) Hyperspectral Infrared Sounder

LEO:

- a) MW Temperature & Humidity Sounder in low-inclination orbit
- b) 6-89 GHz MW Radiometer in low-inclination orbit
- C) Dual Frequency Scatterometer, C/Ku with 5 km (Regional)/25 km (global)
- d) Hyperspectral Infrared Sounder

11 – 15 March 2024, GSICS Annual Meeting (Hybrid), Darmstadt, Germany

Agency's Personnel supporting GSICS

Points of contacts/meeting participants:

- EP: Dr Pradeep Thapliyal (pkthapliyal@sac.isro.gov.in)
- GRWG: Dr Munn Vinayak Shukla (munnvinayak@sac.isro.gov.in)

Dr Abhisek Chakraborty (abhisek1984@sac.isro.gov.in)

- GDWG: Dr Nitant Dube, (nitant@sac.isro.gov.in)
- GSICS Point of Contact for Operational Matters: Ms Shivani Shah (shivanishah@sac.isro.gov.in)

Thank You