

Calibration of radiation belt electron data observed by Arase satellite using Geant4 simulation

National Institute of Information and Communications Technology (NICT, Japan) Space weather laboratory / Researcher - Park Inchun 2024. 3. 12. GSICS meeting

ARASE satellite (ERG mission)

Launch	Date	20 December 2016 (Observation start: March 2017)
	Location	Uchinoura Space Center (USC)
	Launch Vehicl	e Epsilon
Nominal Mission Life		>1 yr
Orbit	Altitude	Perigee: about 460 km, Apogee: about 32,110 km
	Inclination	31°
	Type of Orbit	Elliptical orbit
	Period	about 9 hours (565 min)
Attitude	Stabilizatio	n Spin-stabilized
	Spin Direction	Sun-oriented
	Spin period	8 s (7.5 rpm)
Satellite Bus		SPRINT bus
Configuration Weight		nt 350 kg

ARASE instruments

NICT

- Low-Energy Particle Experiments Electron Analyzer (LEP-e)
- Low-Energy Particle Experiments Ion Mass Analyzer (LEP-i)
- Medium-Energy Particle Experiments Electron Analyzer (MEP-e)
- Medium-Energy Particle Experiments Ion Mass Analyzer (MEP-i)
- High-Energy Electron Experiments (HEP-L, HEP-H)
- Extremely High-Energy Electron Experiments (XEP)
- Plasma Wave Experiment (PWE)
- Magnetic Field Experiment (MGF)
- Software-Type Wave Particle Interaction Analyzer (S-WPIA)

Electron detectors energy range

Calibration of radiation belt electron data observed by Arase satellite using **Geant4** simulation

Purpose of the Study

In-flight ARASE HEP instrument data calibration and performance verification

>What is **Geant4**?

- Geant4 (for GEometry ANd Tracking)
- Developed by CERN, INFN, KEK, SLAC (ver1 released 1994, now 11.1)
- Monte Carlo simulation tool for particle physics
- Simulate interactions when elementary particles passing through and interacting with matter

Data Calibration Process

Produce

- Depends on detector's characteristics
- **G-factor** [mm · str] : change count rate to differential flux

Calibrate the count rate depending on the Energy

<Simulation status>

<Simulation results>

Calibrate the count rate depending on the Energy

- Spectrum structure analysis
 - Beam test and simulation have dent structure
 - Thin and long SSD structure makes loss detection area
 - Energy deposit depends on thickness of loss detection area (scatter angle > 60° → Energy deposit > 450keV)
- Identify the causes of spectral changes
 - Instrument structure affects the Spectroscopic performance

<Electron Beam test>

Calibrate the count rate depending on the Energy

• Using the inversion matrix method, incident energy spectra restored from observed particle counts.

$$C_{true}(E_i) = \mathbf{R}^{-1} \cdot C_{obs}(E_o)$$

 \Re R: Response function $C_{true}(E_i)$: Energy spectra of incident electron counts $C_{obs}(E_o)$: Energy spectra of observed electron counts

Convert to Differential flux (G-factor)

• G-factor?

- The constant of detector to calculate differential flux.
- FOV of detector(*str_s*) x Detector surface area(A) <u>Pre cal HEP-H G-factor : 0.037 cm²str</u>
- How to calculate *str_s*?
 - 1. From the formula
 - Using FOV $str_s = 4 \sin^{-1}(\sin \alpha \sin \beta)$
 - Using collimator geometry(Pre cal method)
 - 2. Using simulation

$$str_{S} = 4\cos^{-1} \sqrt{\frac{1 + \left(\frac{V}{2D}\right)^{2} + \left(\frac{H}{2D}\right)^{2}}{\left(1 + \left(\frac{V}{2D}\right)^{2}\right)\left(1 + \left(\frac{H}{2D}\right)^{2}\right)}}$$

Convert to Differential flux (G-factor)

Calculation of G-factor from the simulation

✓ Simulation founded that the detailed geometry affect the result (Collimator shape, slit thickness)

Calibration results(1 day)

95 keV electron MEPe:HEPe

Calibration results(Long-term, 1year)

Calibration results(Long-term, 1year)

The calibrated data showed a stable state for one year without depending on the Dst index.

Advanced Geant4 application development

NICT

Example of GAG simulations

HEP

TEN-KOH

GAGG detector

CeREs

SNIPE

Airshower model

Calibration of GEO satellite observation

 High-Energy Particle Sensors for Space Weather Applications Onboard the Next Japanese Meteorological Satellite

Radiation Monitors for Space Weather (RMS)

- Operation start : FY2028
- Orbit: GEO
- Observe energy range
 - Proton: 10 MeV ~ 1 GeV
 - Elenctron: 50 keV~ 5 MeV

- The HEP calibration successfully match to MEP-e observation and it reliable for long term observation, not depending on magnetic storms
- From the inheritance of the calibration, we applied a G4 simulation to several instruments which has complicated geometry.
- The Radiation Monitors for Space Weather(RMS) onboard the next Japanese Meteorological satellite planned to cross calibrate with ARASE or GEO satellite